
POSTMASBURG SOLAR PV ENERGY FACILITY 2: FAUNA AND FLORA PRECONSTRUCTION WALK-THROUGH REPORT

PRODUCED FOR ATLANTIC ENERGY PARTNERS

Simon.Todd@3foxes.co.za

JANUARY 2022

DECLARATION OF CONSULTANTS' INDEPENDENCE

- I Simon Todd, as the appointed independent specialist hereby declare that I:
- act/ed as the independent specialist in this application;
- regard the information contained in this report as it relates to my specialist input/study to be true and correct, and
- do not have and will not have any financial interest in the undertaking of the activity, other than remuneration for work performed in terms of the NEMA, the Environmental Impact Assessment Regulations, 2010 and any specific environmental management Act;
- have and will not have no vested interest in the proposed activity proceeding;
- have disclosed, to the applicant, EAP and competent authority, any material information that
 have or may have the potential to influence the decision of the competent authority or the
 objectivity of any report, plan or document required in terms of the NEMA, the Environmental
 Impact Assessment Regulations, 2010 and any specific environmental management Act;
- am fully aware of and meet the responsibilities in terms of NEMA, the Environmental Impact Assessment Regulations, 2010 (specifically in terms of regulation 17 of GN No. R. 543) and any specific environmental management Act, and that failure to comply with these requirements may constitute and result in disqualification;
- have provided the competent authority with access to all information at my disposal regarding the application, whether such information is favourable to the applicant or not; and
- am aware that a false declaration is an offence in terms of regulation 71 of GN No. R. 543.

Simon Todd Pr.Sci.Nat 400425/11.

Della.

January 2022

Introduction & Background

Atlantic Energy Partners (AEP) has appointed 3Foxes Biodiversity Solutions to provide a walk-through of the approved Postmasburg Solar PV Energy Facility 2 located near Postmasburg in the Northern Cape. As part of authorization and permitting conditions for the development, a preconstruction walk-through of the facility is required before construction can commence.

The purpose of the walk-through is to locate and identify any protected or threatened plant species or fauna of conservation concern within the development footprint and which may be impacted by the development. This report details the findings of the walk-through study that was conducted for the development footprint of the PV facility and grid connection. The identity and location of all listed and protected species is provided, which can be used as input for the vegetation clearing permit application that is required from the provincial authority before construction can commence. Recommendations for avoidance or search and rescue are provided as appropriate.

Relevant Aspects of the Development

Figure 1. Satellite image illustrating the layout of the Postmasburg Solar PV Energy Facility 2 in blue, with the access road to the site in purple and the facility service roads in yellow.

The layout of the facility is illustrated above in Figure 1 and consists of a 248ha PV area, a substation in the south and a very short grid connection to the adjacent Eskom Manganore Substation. It is assumed that the whole footprint would be cleared and that all protected species present would be lost from the development area. In practice, it is likely that many of the geophytes will be able to persist and will be able to grow beneath the panels. The trees will however need to be cleared and are not compatible with the operation of the facility.

Walk-Through

The walk-through was conducted over 2 days on the 14th and 15th of January 2022. During the walkthrough, the project footprint area was walked and all listed and protected species observed were recorded. Parallel transects approximately 100 m apart were walked across the footprint area, resulting in a walked track of approximately 27km of walked transects. This was deemed sufficient to provide an accurate estimate of the number of woody trees present at the site and represents more than 10% of the total area. For smaller species, the distance between the transects suggests that it is possible that some less-conspicuous species would be missed. However, the evidence from the site suggests that the density of such species is very low and if any such species are present, they would be represented by a low number of individuals. This is a feature of all walk-through studies and is an inherent limitation associated with searching such a large area. The total distance covered and the comprehensive coverage of the site indicates that the site was well-covered and any concentrations of species of concern or other features are likely to have been observed. As such, there are few limitations with regards to the walk-through and the estimates of the number of individuals of species of concern affected by the development. Apart from the footprint of the facility, the access road to the facility was also checked while in the field. The existing access road to the site is sufficiently wide that it will not need to be expanded up until the point where it reaches the Eskom Substation. From there it will deviate south and around the SS towards the site and in this section, the road will need to be upgraded. The length of the road to be upgraded is approximately 750m long and 6m wide.

Identification of Listed and Protected Species

Plant species of conservation concern which may occur in the area were identified a priori as far as possible, based on a species list for the broad area extracted from the SANBI POSA database. The area used was significantly larger than the study area, but a larger area was used to ensure an inclusive species list and because the area has not been very well sampled historically. Species of conservation concern were extracted from the list based on their status according to Red List of South African plants version 2022 (http://redlist.sanbi.org/) as well as species listed as endangered or protected under the Northern Cape Nature Conservation Act (No. 9 of 2009). In some cases, species are listed under both, but in general the provincial legislation is more inclusive and attempts to provide some protection for species, genera and families likely to vulnerable to illegal plant collection and other similar threats. Of particular relevance to the current study are the following, which are extracted from the legislation and are not intended to provide a comprehensive list of all protected species, only those which are likely to be encountered in the area. The reader is referred to the schedules of the Act for a full list of species listed under the act.

Schedule 1: Specially Protected Flora

Family GERANIACEAE - Pelargonium spp. all species

Schedule 2 Protected Flora

- Amaryllidaceae All species
- Apiaceae All Species
- Apocynaceae All Species
- Asphodelaceae All species except Aloe ferox

- Iridaceae All species
- Mesembryanthemaceae All species
- Capparaceae Boscia spp. Sheperd's trees, all species
- Androcymbium spp. All species
- Crassulaceae All species except those listed in Schedule 1
- Euphorbiaceae Euphorbia spp. All species
- Oxalidaceae Oxalis spp All species
- Portulacaceae Anacampseros spp. All species

Apart from the above flora, all species of geophytes and large woody species at the site were recorded irrespective of their status. This is to ensure that all species of potential concern are captured as well as to allay the fears of the developer or ECOs which are not always familiar with the vegetation of the area concerned and are not always able to identify species reliably in the field.

In terms of fauna, the following are species which potentially occur at the site and are listed as protected species:

Schedule 1. Specially Protected Fauna

- Felis nigripes Black-footed cat/Miershooptier
- Felis silvestris African wild cat/Afrika wildekat
- Ictonyx striatus Striped polecat/Stinkmuishond
- Mellivora capensis Honey badger/Ratel
- Otocyon megalotis Bat-eared fox/Bakoorvos
- Proteles cristatus Aardwolf/Maanhaarjakkals
- Vulpes chama Cape fox / Silver jackal Silwervos
- Orycteropus afer Aardvark / Ant-bear Erdvark / Aardvark
- Family: Chamaeleonidae Chamaeleons, all species
- Family: Cordylidae Girdled lizards, all species
- Cacosternum capense Cape Caco / Kaapse blikslanertjie
- Pyxicephalus adspersus Giant Bullfrog / Giant Pyxie Brulpadda

Schedule 2. Protected Species

Virtually all indigenous fauna which do not fall under Schedule 1 are classified under Schedule 2, except those species classified as pests. In terms of mammals most rodents, shrews, elephant shrews, bats, hares and rabbits, carnivores such as mongoose, genets, and meerkat, antelope such as klipspringer, steenbok and duiker are included. In terms of other vertebrates, all tortoises, lizards, most harmless snakes and all frogs are listed under Schedule 2. The full list is contained within the Schedule and is not repeated here.

In terms of fauna, the following *inter alia* are protected and may not be hunted, captured or harmed without a permit:

- All tortoises
- All lizards
- All frogs
- Most snakes

- All indigenous antelope
- Aardvark
- Most small carnivores such as Honey Badger, Cape Fox, Bat-eared Fox, Large Grey Mongoose etc.
- Most birds except pest species

Of relevance to the current study would be burrows of any of the above species within the development footprint, specialized habitat home to red-listed fauna, or nesting and roosting sites of birds such as raptors or cranes. All large trees were checked for raptor nests or other large bird species, but no such nests were observed within the study area.

Study Limitations

The walk-through was conducted in January 2022 following good early summer rains, with the result that the vegetation of the site was green and in active growth. Many annuals and geophytes were present and the grass layer was well-developed, suggesting that the vast majority of species of potential concern were growing and could be observed. Part of the site, estimated at approximately 15% of the site had recently burnt and it is likely that this impacted the results of the walk-through to some degree as it is likely that some protected species had burnt and would not have had time to resprout. However, as this was not a large proportion of the site, the impact of this is not considered to be significant. Due to the conditions at the site being generally considered to represent near optimal conditions for the walk-through, there are no significant limitations in this regard for the walk-through. The results obtained are therefore considered reliable and robust. However, as with all walk-through studies, it is possible that a small number of individuals of smaller or inconspicuous species may have been overlooked or were not active at the time of the walk-through.

Figure 2. A proportion of the site has recently burnt and it is possible that this would have impacted the results of the walk-through to some degree. This however represents a relatively small area and it is unlikely that this has had a major impact on the results.

Walk-Through Results

Figure 2. Walk-through track showing the parallel transects that were walked across the site and the location of the observations of species of concern.

The results of the walk-through are summarized below in Table 1. In terms of nationally protected species, it is estimated that the development would impact 938 *Vachelia erioloba* trees, 41 *Vachelia haematoxylon* trees and 57 *Boscia albitrunca*. Provincially protected species observed include the bulb *Nerine laticoma* of which an estimated 160 plants would be impacted and *Olea europea* subsp.

africana of which an estimate 658 would be lost to the development. As the development has two separate authorizations (PV Facility and Grid), the number of each species affected by each component of the development is detailed in Table 1 below. Other species which may be present within the site at low numbers but which were not observed during the walk-through include Boophone disticha and Euphorbia braunsii. A single dead bulb of Boophone was observed during the walk through, while Euphorbia braunsii was not observed during the walk-through but a few localized individuals were observed at the site during the original field assessment for the development in 2014. If present, it is estimated that there would be less than 10 individuals of either species present on the site within the affected area.

The abundance of fauna in the study areas was low and although there were some aardvark diggings in the study area, none of these appeared to be occupied by other mammals such as porcupine, bateared foxes or similar den-using fauna. As such, no faunal concerns were observed at the site and no action in this regard is recommended at this stage.

Table 1. Summary of the number of listed and protected species which were encountered during the walk-through. The table provides the estimate of the number of individuals of each species affected as well as an estimate of the confidence around that estimate based on the pattern of distribution of each species at the site and the likely sampling error.

O	Protection	PV F	acility	Grid/Substation		
Species	Status	Estimate	Confidence	Estimate	Confidence	
Vachelia erioloba	National/DEFF	936	±100	2	±5	
Vachelia haematoxylon	National/DEFF	40	±10	1	±2	
Nerine laticoma	Provincial	160	±20	0	±0	
Ledebouria sp.	Not Protected	1064	±100	5	±10	
Olea europea spp. africana	Provincial	656	±70	2	±5	
Boscia albitrunca	National	56	±10	1	±1	

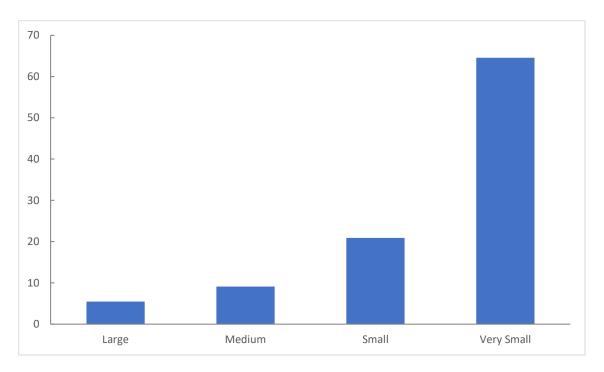


Figure 1. View over the site, showing the typical vegetation of the site, which is dominated by *Grewia flava, Senegalia mellifera* and *Tarchonanthus camphoratus*, with occasional individuals of *Vachelia erioloba*.

Apart from the estimate of the number of affected protected tree species, the size class distribution of *Vachelia erioloba* was also recorded in the field for all individuals encountered. This was not done for *Vachelia haematoxylon* as this species was not common and all individuals present are of the bushy type and no large tree type individuals greater than 2m tall are present within the affected area. In terms of the *Vachelia erioloba*, these were classified into 5 size classes as follows:

- Very Small individuals that were less than 2 m tall
- Small individuals that were less than 4m tall and less than 3m wide
- Medium individuals that were more than 4m tall and more than 3m wide
- Large individuals that were more than 4m tall and more than 5m wide
- Very Large individuals that were more than 6m tall and more than 10m wide.

The results of the size class distribution are illustrated below. The *Vachelia erioloba* population within the affected area is dominated by very small individuals, which reflects recent recruitment and a likely increasing population at the site. About 85% of the individuals present are within the Small and Very Small category and only 5% of the trees present are within what is considered to represent the Large size class. This converts to an estimated total of 50 large *V.erioloba* trees that would be lost to the development. No Very Large individuals were observed within the affected area which can be ascribed to the shallow soils that characterize the site. In terms of Boscia *albitrunca*, most of the individuals present were of the ground-hugging type and less than 0.5m tall. No large individuals were observed present at the site.

Figure 2. Size class distribution of *Vachelia erioloba* showing the proportion of trees within each size class based on a sample of 110 trees that were sampled during the walk-through.

Conclusions and Recommendations

The development area of the Postmasburg PV facility is located within the Kuruman Thornveld veld type on shallow soils. These soils are generally unfavourable for the development of large trees and the vegetation within the site is dominated by Grewia flava, Senegalia mellifera and Tarchnanthus camphoratus, with a relatively low density of protected tree species. In terms of nationally protected species, Vachelia erioloba occurs at an approximate density of 3.5 trees/ha and while almost 1000 individuals would be lost to the development, 85% of these are young and small individuals. There is also a low number of Vachelia haematoxylon and Boscia albitrunca present, but in both cases, these are small individuals and the loss of these individuals from the site would not have a significant impact on the local population of either species. In terms of provincially protected species, only Olea europea subsp. africana and Nerine laticoma were observed to be present. Approximately 650 Olea trees would be impacted by the development. These are largely small individuals likely resprouters from the regular fires that appear to affect the area. None of the protected tree species can be successfully translocated and all of the tree species would need to be destroyed at site clearing. The only species observed present that is considered suitable for translocation is Nerine laticoma, of which a representative sample (at least 20) should be translocated to outside of the development footprint. If any additional such species suitable for translocation are encountered at site clearing or construction, they should be translocated outside of the affected area. It is important to note that a permit is required for translocation of protected species, even within the same site.

In terms of the process going forward from this walk-through, a clearing permit obtainable from DEFF is required for the loss of the nationally protected trees and an additional permit would also be required from DAEARDLR which would cover the provincially protected species such as the *Olea europea subsp. africana* and *Nerine laticoma* but would also need to include the protected tree species

as well as general site clearing. This report, as well as the EA for the applications, landowner permission and the specialist studies from the respective EIA's are required for the permit applications.

Annex 1. List of Coordinates

Coordinates of listed and protected plant species observed during the walk-through.

ID	Species	Height	Width	Count	Latitude	Longitude
1	Vachelia erioloba	2	2	1	-28.1127	23.11779
2	Vachelia erioloba	0.5	0.5	1	-28.1288	23.10666
3	Vachelia erioloba	0.5	0.5	1	-28.1113	23.11461
4	Vachelia erioloba	1	0.5	1	-28.1122	23.11128
5	Vachelia erioloba	1	0.5	1	-28.1213	23.10677
6	Vachelia erioloba	1	1	1	-28.1214	23.11619
7	Vachelia erioloba	1	1	1	-28.1246	23.11429
8	Vachelia erioloba	1	1	1	-28.1246	23.11996
9	Vachelia erioloba	1	1	1	-28.1279	23.10394
10	Vachelia erioloba	1	1	1	-28.1282	23.10496
11	Vachelia erioloba	1	1	1	-28.1265	23.11442
12	Vachelia erioloba	1	1	1	-28.1263	23.11552
13	Vachelia erioloba	1	1	1	-28.1261	23.11678
14	Vachelia erioloba	1	1	1	-28.126	23.11729
15	Vachelia erioloba	1	1	1	-28.1276	23.11971
16	Vachelia erioloba	1	1	1	-28.1274	23.11966
17	Vachelia erioloba	1	1	1	-28.1271	23.11643
18	Vachelia erioloba	1	1	1	-28.1228	23.11966
19	Vachelia erioloba	1	1	1	-28.129	23.11109
20	Vachelia erioloba	1	1	1	-28.1289	23.11122
21	Vachelia erioloba	1	1	1	-28.1281	23.11642
22	Vachelia erioloba	1	1	1	-28.1113	23.11466
23	Vachelia erioloba	1	1	1	-28.1146	23.11354
24	Vachelia erioloba	1	1	1	-28.1204	23.11651
25	Vachelia erioloba	1	1	1	-28.1204	23.11657
26	Vachelia erioloba	1	1	1	-28.1199	23.11878
27	Vachelia erioloba	1	1	1	-28.1198	23.11881
28	Vachelia erioloba	1	1	1	-28.1246	23.11436
29	Vachelia erioloba	1	1	1	-28.1228	23.1197
30	Vachelia erioloba	1	1	1	-28.1225	23.1201
31	Vachelia erioloba	1	1	1	-28.1216	23.11992
32	Vachelia erioloba	1	1	1	-28.1223	23.11654
33	Vachelia erioloba	1	1	1	-28.1226	23.11525
34	Vachelia erioloba	1	1	1	-28.1217	23.11441
35	Vachelia erioloba	1	1	1	-28.1217	23.11444
36	Vachelia erioloba	1	2	5	-28.1223	23.11647
37	Vachelia erioloba	1	2	1	-28.1218	23.1191
38	Vachelia erioloba	1	2	1	-28.1271	23.1166
39	Vachelia erioloba	1	2	1	-28.1281	23.11628
40	Vachelia erioloba	1	2	1	-28.1221	23.12003
41	Vachelia erioloba	2	1	1	-28.1273	23.11573
42	Vachelia erioloba	2	1	1	-28.1281	23.11637
43	Vachelia erioloba	2	1	1	-28.12	23.11819
-		-			-	2-2

44	Vachelia erioloba	2	1	1	-28.1117	23.11655
45	Vachelia erioloba	2	1	1	-28.1118	23.11654
46	Vachelia erioloba	2	1	1	-28.1127	23.11535
47	Vachelia erioloba	2	1	1	-28.1268	23.11904
48	Vachelia erioloba	2	2	1	-28.1138	23.10554
49	Vachelia erioloba	2	2	1	-28.113	23.11785
50	Vachelia erioloba	2	2	1	-28.1125	23.11777
51	Vachelia erioloba	2	2	1	-28.1115	23.11651
52	Vachelia erioloba	2	2	1	-28.112	23.11653
53	Vachelia erioloba	2	2	1	-28.1127	23.11643
54	Vachelia erioloba	2	2	1	-28.1237	23.11893
55	Vachelia erioloba	2	2	1	-28.1223	23.12008
56	Vachelia erioloba	2	2	1	-28.1222	23.11162
57	Vachelia erioloba	2	2	1	-28.1213	23.11643
58	Vachelia erioloba	2	2	1	-28.1264	23.11026
59	Vachelia erioloba	2	2	1	-28.1274	23.10927
60	Vachelia erioloba	2	2	1	-28.1262	23.11621
61	Vachelia erioloba	2	2	1	-28.1268	23.11974
62	Vachelia erioloba	2	2	1	-28.1282	23.11054
63	Vachelia erioloba	2	2	1	-28.1299	23.10582
64	Vachelia erioloba	2	3	1	-28.1222	23.12007
65	Vachelia erioloba	2	4	1	-28.1242	23.11176
66	Vachelia erioloba	2	4	1	-28.1243	23.1117
67	Vachelia erioloba	3	2	1	-28.1124	23.1117
68	Vachelia erioloba	3	2	1	-28.1125	23.11647
69	Vachelia erioloba	3	2	1	-28.1256	23.11417
70	Vachelia erioloba	3	3	1	-28.1125	23.11649
70	Vachelia erioloba	3	3	1	-28.1123	23.11529
71 72	Vachelia erioloba	3	3	1	-28.1123	23.11323
73	Vachelia erioloba	3	3	1	-28.1238	23.11878
		3	3	1	-28.1229	23.11099
74 75	Vachelia erioloba	•	_	_		
75 76	Vachelia erioloba	3	3	1	-28.1228	23.1198
76	Vachelia erioloba	3	3	1	-28.1265	23.11446
77 70	Vachelia erioloba	3	3	1	-28.1267	23.11956
78 70	Vachelia erioloba	3	3	1	-28.129	23.1105
79	Vachelia erioloba	3	3	1	-28.128	23.1167
80	Vachelia erioloba	3	3	1	-28.1146	23.11326
81	Vachelia erioloba	3	3	1	-28.1213	23.11186
82	Vachelia erioloba	3	4	1	-28.1211	23.11716
83	Vachelia erioloba	3	4	1	-28.1241	23.12007
84	Vachelia erioloba	3	4	1	-28.1269	23.1187
85	Vachelia erioloba	3	4	1	-28.1277	23.11934
86	Vachelia erioloba	3	4	1	-28.1229	23.11912
87	Vachelia erioloba	3	5	1	-28.1146	23.11339
88	Vachelia erioloba	4	2	1	-28.122	23.11999
89	Vachelia erioloba	4	3	1	-28.1126	23.11778
90	Vachelia erioloba	4	4	1	-28.1217	23.11996
91	Vachelia erioloba	4	4	1	-28.1278	23.11972
92	Vachelia erioloba	4	4	1	-28.1292	23.10445
						•

93	Vachelia erioloba	4	4	1	-28.129	23.11057
94	Vachelia erioloba	4	4	1	-28.1287	23.11227
95	Vachelia erioloba	4	4	1	-28.1212	23.1119
96	Vachelia erioloba	4	4	1	-28.112	23.11653
97	Vachelia erioloba	5	4	1	-28.1115	23.11408
98	Vachelia erioloba	5	4	1	-28.1293	23.10941
99	Vachelia erioloba	5	5	1	-28.1269	23.11845
100	Vachelia erioloba	5	5	1	-28.1292	23.10963
101	Vachelia erioloba	5	5	1	-28.1117	23.11655
102	Vachelia erioloba	5	5	1	-28.1246	23.11984
103	Vachelia erioloba	5	8	1	-28.1229	23.11359
104	Vachelia erioloba	2	4	4	-28.1228	23.11531
105	Vachelia erioloba	1	1	1	-28.1119	23.11528
106	Vachelia erioloba	2	2	1	-28.1121	23.11651
107	Vachelia erioloba	4	4	1	-28.1212	23.112
108	Vachelia erioloba	1	1	1	-28.1231	23.11276
109	Vachelia erioloba	1	1	1	-28.1198	23.11882
110	Vachelia erioloba	5	5	1	-28.1265	23.11457
111	Vachelia haematoxylon	1	1	1	-28.1268	23.11308
112	Ammocharis			20	-28.1185	23.11068
113	Vachelia haematoxylon	1	1	1	-28.1261	23.11676
114	Vachelia haematoxylon	1	1	1	-28.1269	23.11742
115	Vachelia haematoxylon	1	1	1	-28.1279	23.11771
116	Vachelia haematoxylon	1	1	1	-28.1279	23.11783
117	Boscia albitrunca	0.2	0.5	1	-28.1272	23.11109
118	Boscia albitrunca	0.3	0.3	1	-28.1128	23.1126
119	Boscia albitrunca	0.3	0.5	1	-28.1173	23.1128
120	Boscia albitrunca	0.5	0.2	1	-28.1276	23.10842
121	Boscia albitrunca	0.5	0.5	1	-28.1196	23.111
122	Boscia albitrunca	0.5	1	1	-28.1233	23.111
123	Boscia albitrunca	0.3	2	1	-28.1249	23.10082
124	Ledebouria sp.	0.2	2	5	-28.1134	23.11774
125	Ledebouria sp.			5	-28.1134	23.11028
126	Ledebouria sp.			1	-28.113	23.11518
	·					
127	Ledebouria sp. Ledebouria sp.			10	-28.1246	23.10994
128	•			10	-28.1148	23.10542
129	Ledebouria sp.			10	-28.1162	23.10711
130	Ledebouria sp.			2	-28.1239	23.11357
131	Ledebouria sp.			20	-28.1145	23.10543
132	Ledebouria sp.			20	-28.1161	23.10505
133	Ledebouria sp.			5	-28.1243	23.11155
134	Ledebouria sp.			5	-28.1215	23.11545
135	Ledebouria sp.			5	-28.1283	23.11483
136	Ledebouria sp.			5	-28.1126	23.10989
137	Ledebouria sp.			5	-28.1132	23.10766
138	Ledebouria sp.			5	-28.1164	23.10624
139	Ledebouria sp.			5	-28.1162	23.10692
140	Ledebouria sp.			5	-28.1188	23.10511
141	Ledebouria sp.			10	-28.1203	23.10696
						•

142	Olea europea subsp. africana	0.5	1	1	-28.124	23.10784
143	Olea europea subsp. africana	1	1	1	-28.1248	23.11348
144	Olea europea subsp. africana	1	1	1	-28.1239	23.1087
145	Olea europea subsp. africana	1	1	1	-28.1266	23.11429
146	Olea europea subsp. africana	1	1	1	-28.1264	23.11531
147	Olea europea subsp. africana	1	1	1	-28.1262	23.11596
148	Olea europea subsp. africana	1	1	1	-28.127	23.11783
149	Olea europea subsp. africana	1	2	1	-28.1249	23.11787
150	Olea europea subsp. africana	2	1	1	-28.125	23.10769
151	Olea europea subsp. africana	2	2	1	-28.1234	23.11623
152	Olea europea subsp. africana	2	2	1	-28.1275	23.10427
153	Olea europea subsp. africana	2	2	1	-28.1288	23.10657
154	Olea europea subsp. africana	3	2	1	-28.1176	23.10553
155	Olea europea subsp. africana	3	4	1	-28.1254	23.11052
156	Olea europea subsp. africana	0.5	0.5	1	-28.1213	23.10678
157	Olea europea subsp. africana	1	1	1	-28.1295	23.10808
158	Olea europea subsp. africana	0.5	0.5	1	-28.1239	23.10896
159	Olea europea subsp. africana	0.5	0.5	1	-28.1293	23.10898
160	Olea europea subsp. africana	1	1	1	-28.1241	23.10743
161	Olea europea subsp. africana	1	1	1	-28.1245	23.10406
162	Olea europea subsp. africana	1	1	1	-28.1149	23.10775
163	Olea europea subsp. africana	1	1	1	-28.115	23.10765
164	Olea europea subsp. africana	1	1	1	-28.1164	23.10499
165	Olea europea subsp. africana	1	1	1	-28.1165	23.10499
166	Olea europea subsp. africana	1	1	1	-28.1166	23.10568
167	Olea europea subsp. africana	1	1	1	-28.1166	23.10572
168	Olea europea subsp. africana	1	1	1	-28.1147	23.11313
169	Olea europea subsp. africana	1	1	1	-28.116	23.11206
170	Olea europea subsp. africana	1	1	1	-28.1174	23.11200
171	Olea europea subsp. africana	1	1	1	-28.1174	23.11087
172	Olea europea subsp. africana	1	1	1	-28.1174	23.11088
173	Olea europea subsp. africana	1	1	1	-28.1232	23.10859
173	Olea europea subsp. africana	1	1	1	-28.119	23.10639
175	Olea europea subsp. africana	1	1	1	-28.1203	23.1008
176	Olea europea subsp. africana Olea europea subsp. africana	1	1	1	-28.1225	23.10544
177		1	1	1	-28.1269	23.10744
178	Olea europea subsp. africana	1	1	1	-28.1284	23.10424
179	Olea europea subsp. africana	1	1	1	-28.1289	23.10653
180	Olea europea subsp. africana	1	1	1	-28.1291	23.10441
181	Olea europea subsp. africana	1	1	1	-28.1295	23.10751
182	Olea europea subsp. africana	1	1	1	-28.1287	23.11263
183	Olea europea subsp. africana	1	1	1	-28.115	23.10796
184	Olea europea subsp. africana	1	2	1	-28.1237	23.10927
185	Olea europea subsp. africana	1	2	1	-28.12	23.10852
186	Olea europea subsp. africana	1	2	1	-28.1198	23.10921
187	Olea europea subsp. africana	2	1	1	-28.1295	23.10745
188	Olea europea subsp. africana	2	2	1	-28.1277	23.11314
189	Olea europea subsp. africana	2	2	1	-28.1295	23.10482
190	Olea europea subsp. africana	2	2	1	-28.1161	23.11193

191	Olea europea subsp. africana	2	2	1	-28.1175	23.11042
192	Olea europea subsp. africana	2	2	1	-28.117	23.11243
193	Olea europea subsp. africana	2	2	1	-28.1168	23.11322
194	Olea europea subsp. africana	2	2	1	-28.1181	23.11273
195	Olea europea subsp. africana	2	2	1	-28.1133	23.10714
196	Olea europea subsp. africana	2	2	1	-28.1148	23.10549
197	Olea europea subsp. africana	2	2	1	-28.1128	23.11246
198	Olea europea subsp. africana	2	2	1	-28.1151	23.10743
199	Olea europea subsp. africana	2	2	1	-28.1168	23.10502
200	Olea europea subsp. africana	2	2	1	-28.116	23.10813
201	Olea europea subsp. africana	2	2	1	-28.1152	23.11114
202	Olea europea subsp. africana	2	2	1	-28.1152	23.11124
203	Olea europea subsp. africana	2	3	1	-28.1225	23.11075
204	Olea europea subsp. africana	2	3	1	-28.1137	23.10907
205	Olea europea subsp. africana	2	3	1	-28.1181	23.10805
206	Olea europea subsp. africana	2	3	1	-28.122	23.10862
207	Olea europea subsp. africana	3	1	1	-28.1195	23.11089
208	Olea europea subsp. africana	3	2	1	-28.118	23.11311
209	Olea europea subsp. africana	3	3	1	-28.1292	23.10979
210	Olea europea subsp. africana	3	3	1	-28.1142	23.10699
211	Olea europea subsp. africana	3	3	1	-28.115	23.10758
212	Olea europea subsp. africana	3	3	1	-28.1154	23.10622
213	Olea europea subsp. africana	3	3	1	-28.1181	23.11274
214	Olea europea subsp. africana	3	3	1	-28.1188	23.10938
215	Olea europea subsp. africana	3	3	1	-28.1217	23.10966
216	Olea europea subsp. africana	3	5	1	-28.1236	23.10395
217	Olea europea subsp. africana	3	5	1	-28.1293	23.10882
218	Olea europea subsp. africana	4	8	1	-28.1267	23.11369
219	Olea europea subsp. africana	1	1	1	-28.1236	23.10514
220	Olea europea subsp. africana	1	3	1	-28.1237	23.10923
221	Olea europea subsp. africana	1	1	1	-28.122	23.10835
222	Olea europea subsp. africana	1	1	1	-28.122	23.10837
223	Olea europea subsp. africana	2	2	1	-28.1279	23.10662