AVIFAUNAL COMPLIANCE STATEMENT

Roan PV 2 Facility and Associated Infrastructure near Hartbeesfontein, North-West Province

February 2022

AFRIMAGE Photography. (Pty) Ltd I/ar

Chris van Rooyen Consulting

VAT#: 4580238113 email: vanrooyen.chris@gmail.com Tel: +27 (0)82 4549570 cell

EXECUTIVE SUMMARY

The Applicant, AMDA November (Pty) Ltd, is proposing the construction of a photovoltaic (PV) solar energy facility known as Roan 2 located on portions 4,5,9 and 16 of the farm 299 approximately 3km south of Hartbeesfontein in the North West Province.

The project is situated within a Renewable Energy Development Zone (REDZ) known as the Klerksdorp REDZ (REDZ10). The solar PV facility will comprise of arrays of PV panels and associated infrastructure and will have a contracted capacity of up to 100 MW. The project is situated within the City of Matlosana local Municipality within the Dr Kenneth Kaunda District Municipality of the North-West Province of South Africa.

An additional 100 MW PV facility known as Roan 1 is concurrently being assessed through a separate Basic Assessment process.

A total of 268 species could potentially occur within the broader where the project is located (see Appendix B). Of these, 97 are classified as priority species. Of the 97 priority species, 38 have a medium to high probability of occurring in the development area. Of the 38 priority species with a medium to high probability of occurrence, 14 were recorded during site surveys.

All the species of conservation concern (SSC) recorded in the broader area by SABAP2 (Lanner Falcon, Secretarybird, Verreaux's Eagle), except one (Yellow-billed Stork), have a full protocol reporting rates of less than 1%, indicating vagrant status in the area. Yellow-billed Stork has a reporting rate of 1.74%, which is also very low.

POTENTIAL IMPACTS

The potential impacts identified in the course of the study are:

• Construction Phase

Displacement due to disturbance and habitat transformation associated with the construction of the solar PV plant and associated infrastructure.

• Operational Phase

Collisions with the solar panels Entrapment in perimeter fences Electrocutions in the onsite substations Collisions with the 132kV grid connection

• Decommissioning Phase

Displacement due to disturbance associated with the decommissioning of the solar PV plant and associated infrastructure.

ENVIRONMENTAL SENSITIVITIES

The following environmental sensitivities were identified at the proposed Roan 2 PV facility:

• Pans, dams and water reservoirs (waterbodies): Very High sensitivity (Solar panel exclusion zone)

Included are areas within 100m of waterbodies and wetlands. Wetlands and waterbodies are crucially important for priority avifauna, particularly waterbirds, and many non-priority species. It is therefore important to leave open space for birds to access and leave the waterbodies unhindered. No solar panels should be constructed in these areas, and other infrastructure should be limited to what is absolutely essential.

• Rivers and wetlands: Very High sensitivity (Solar panel exclusion zone):

Included are areas within 100m of rivers and wetlands. These areas are important for priority avifauna and many non-priority species. It is important to leave open space for birds to access and leave the riverine areas and wetlands unhindered. No solar panels should be constructed in these areas, and other infrastructure should be limited to what is essential.

The table below provides a summarised assessment of the impact ratings.

Environmental parameter	Issues	Significance rating prior to mitigation	Significance rating post mitigation
	Displacement of priority species	High	High
	due to disturbance and habitat		
	destruction associated with		
	construction of the PV plant and		
	associated infrastructure.		
	Mortality of priority species due	Very low	Very low
	to collisions with solar panels		
	Entrapment of birds in the	Medium	Low
Avifauna	perimeter fence		
	Mortality of priority species due	Low	Low
	to electrocution in the onsite		
	substations		
	Mortality of priority species due to collisions with the 132kV OHL	Medium	Low
	Displacement of priority species	Medium	Medium
	due to disturbance associated		
	with decommissioning of the PV		
	plant and associated		
	infrastructure.		

MANAGEMENT ACTIONS

The following management actions have been proposed in this assessment:

Construction phase

- Construction activity should be restricted to the immediate footprint of the infrastructure.
- Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species.
- Measures to control noise and dust should be applied according to current best practice in the industry.
- Maximum used should be made of existing access roads and the construction of new roads should be kept to a minimum.
- The mitigation measures proposed by the botanical specialist must be strictly enforced.
- A 100m solar panel exclusion zone must be maintained around sensitive areas i.e. rivers, pans, dams, water reservoirs and wetlands.

Operational phase

- Increasing the spacing between at least the top two wires (to a minimum of 30cm) and ensuring they are correctly tensioned will reduce the snaring risk.
- If possible, a single perimeter fence should be used.
- Substation: Due to the complicated design of the substation hardware, pro-active mitigation is not a practical
 option. Instead, the situation must be monitored, and should electrocutions of priority species be recorded,
 reactive mitigation could be applied in the form of insulation of live components.
- The whole grid connection needs to be marked with Eskom approved bird flight diverters. The bird flight diverters should be installed on the full span length on the earthwire (according to Eskom guidelines five

metres apart). Light and dark colour devices must be alternated to provide contrast against both dark and light backgrounds respectively. These devices must be installed as soon as the conductors are strung.

De-commissioning phase

- Decommissioning activity should be restricted to the immediate footprint of the infrastructure.
- Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species.
- Measures to control noise and dust should be applied according to current best practice in the industry.

REASONED OPINION

The study area and immediate environment is classified as Low to Medium sensitivity for terrestrial animals according to the Terrestrial Animal Species Theme. The medium sensitivity classification is not linked to avifauna. The project site contains marginal habitat for species of conservation concern (SCC) as defined in the Protocol for the specialist assessment and minimum report content requirements for environmental impacts on terrestrial animal species (Government Gazette No 43855, 30 October 2020, namely listed on the IUCN Red List of Threatened Species or South Africa's National Red List website as Critically Endangered, Endangered or Vulnerable. Based on these criteria, the development area is correctly classified as Low sensitivity for avifauna. No fatal flaws were discovered during the investigations. It is therefore recommended that the activity is authorised, on condition that the proposed mitigation measures as detailed in the Impact Tables (Section 9 of the report) and the EMPr (Appendix C) are strictly implemented.

IMPACT STATEMENT

It is recommended that the activity is authorised, on condition that the proposed mitigation measures as detailed in the Impact Tables (Section 9 of the report) and the EMPr (Appendix C) are strictly implemented.

DECLARATION OF INDEPENDENCE

I, Chris van Rooyen as duly authorised representative of Chris van Rooyen Consulting, and working under the supervision of and in association with Albert Froneman (SACNASP Zoological Science Registration number 400177/09) as stipulated by the Natural Scientific Professions Act 27 of 2003, hereby confirm my independence (as well as that of Chris van Rooyen Consulting) as a specialist and declare that neither I nor Chris van Rooyen Consulting have any interest, be it business, financial, personal or other, in any proposed activity, application or appeal in respect of which we were appointed as specialist consultants in terms of the National Environmental Management Act, 1998 (Act No. 107 of 1998), other than fair remuneration for work performed, specifically in connection with the Environmental Impact Assessment for the Roan 2 PV Suite.

Ami in Laufe

Full Name: Chris van Rooyen

Title / Position: Director

Minimum report requirements	listed in the	Protocol for th	e specialist	assessment and
minimum report content require	ments for envi	ronmental impac	ts on terrestr	ial animal species
(Government Gazette No 43855,	, 30 October 20	020)		

(Government Gazette No 43655, 50 October 20	20)
Contact details and relevant experience as well as the SACNASP Registration number of the specialist preparing the assessment including a curriculum vitae;	Appendix A
A signed statement of independence by the specialist;	Page 6
A statement on the duration, date and season of the site inspection and the relevance of the season to the outcome of the assessment;	Section 2
A description of the methodology used to undertake the site sensitivity verification, impact assessment and site inspection, including equipment and modelling used where relevant;	Section 2
A description of the mean density of observations/number of sample sites per unit area and the site inspection observations;	Section 5
A description of the assumptions made and any uncertainties or gaps in knowledge or data;	Section 2
The location of areas not suitable for development and to be avoided during construction where relevant;	Section 5
Impact management actions and impact management outcomes proposed by the specialist for inclusion in the Environmental Management Programme (EMPr);	Section 9 and Appendix C
A reasoned opinion, based on the findings of the specialist assessment, regarding the acceptability or not of the development and if the development should receive approval or not, related to the specific theme being considered, and any conditions to which the opinion is subjected if relevant; and	Section 11
A motivation must be provided if there were any development footprints identified as per paragraph 2.2.12 above that were identified as having "low" or "medium" terrestrial animal species sensitivity and were not considered. appropriate.	Section 5

Γ

Contents

EXECUTIVE SUMMARY	2	
POTENTIAL IMPACTS		2
MANAGEMENT ACTIONS		3
REASONED OPINION		4
1 Introduction	11	
1.1 Scope, Purpose and Objectives of this Compliance Statement		11
1.2 Terms of Reference		12
2 Approach and Methodology	14	
2.1 Information Sources		15
2.2 Assumptions, Knowledge Gaps and Limitations		17
3 Legislative and Permit Requirements	18	
3.1 Legislative Framework		18
4 Baseline Environmental Description	20	
4.1 General Description		20
5 Identification of Environmental Sensitivities		
5.1 Sensitivities identified by the National Web-Based Environmental Screening Tool		28
5.2 Specialist Sensitivity Analysis and Verification		29
6 Issues, Risks and Impacts	30	
6.1 Identification of Potential Impacts/Risks		30
7 Impact Assessment	31	
7.1 Introduction		31
7.2 Impacts associated with PV plants and associated infrastructure		32
7.3 No-go option		37
8 Impact rating methodology		
9 Impact rating methodology		
9.1 Construction Phase		37
9.2 Operational Phase		37
9.3 Decommissioning Phase		40
10 Environmental Management Programme Inputs	41	
11 Identification of a preferred grid connection alignment and lay-down area	41	
11.1 132kV Grid connection		41
11.2 Lay-down areas		41
12 Final Specialist Statement and Authorisation Recommendation	41	
12.1 Statement and Reasoned Opinion		41
13 References		
Appendices		
APPENDIX A - SPECIALIST EXPERTISE		
APPENDIX B: SPECIES LIST FOR BROADER AREA APPENDIX C: ENVIRONMENTAL MANAGEMENT PROGRAMME		

APPENDIX D: IMPACT ASSESMENT METHODOLOGY	64
APPENDIX E: SITE SENSITIVITY VERIFICATION REPORT	68

List of Figures

Figure 1: Map of the proposed Roan 2 PV facility	. 13
Figure 2: Area covered by the broader area (4 x pentad grid cells)	. 15
Figure 3: The location of the drive transects relative to the proposed Roan 2 PV site.	. 15
Figure 4: The abundance of priority species recorded during transect counts in the project site	. 27
Figure 5: Priority species recorded during surveys.	. 28
Figure 6: The National Web-Based Environmental Screening Tool map of the project site, indicating sensitivities for the Terrestrial Animal Species theme. The medium sensitivity is not related to avifauna	. 29
Figure 7: Avifaunal solar panel no-go buffer zones at the site	. 30
Figure 8: The top 10 collision prone bird species in South Africa, in terms of reported incidents contained the Eskom/Endangered Wildlife Trust Strategic Partnership central incident register 1996 - 2014 (EWT unpublished data)	

List of Tables

Table 1: International agreements and conventions which South Africa is party to and which is relevant to the conservation of avifauna.	
Table 2: Priority species occurring in the broader area with a medium to high likelihood of regular occurren in the development area.	
Table 3: Priority species which were recorded as incidental records in the project site.	. 28
Table 4: Comparison of impacts on environmental parameters pre- and post-mitigation	. 40

List of Abbreviations

BA	Basic Assessment
BGIS	Biodiversity Geographic Information System
BLSA	BirdLife South Africa
DFFE	Department of Forestry, Fisheries and the Environment
EIA	Environmental Impact Assessment
EMPr	Environmental Management Programme
IBA	Important Bird Area
IKA	Index of Kilometric Abundance
IUCN	International Union for Conservation of Nature
NEMA	National Environmental Management Act (Act 107 of 1998, as amended)
OHL	Overhead Line
PV	Photovoltaic
REDZs	Renewable Energy Development Zones
SABAP 1	South African Bird Atlas 1
SABAP 2	South African Bird Atlas 2
SACNASP	South African Council for Natural and Scientific Professions
SANBI	South African Biodiversity Institute
SAPAD	South Africa Protected Areas Database

Glossary

Definitions			
Project site	The area covered by the proposed Roan 1 and Roan 2 PV cluster.		
Broader area	A consolidated data set for the pentads where the project site is located.		
Development area	The development footprint containing the Roan 2 PV solar arrays and associated infrastructure.		
Priority species	 South African Red Data species. South African endemics and near-endemics. Raptors Waterbirds 		

1 INTRODUCTION

The Applicant, AMDA November (Pty) Ltd, is proposing the construction of a photovoltaic (PV) solar energy facility known as Roan 2 located on portions 4,5,9 and 16 of the farm 299 approximately 3km south of Hartbeesfontein in the North West Province.

The project is situated within a Renewable Energy Development Zone (REDZ) known as the Klerksdorp REDZ (REDZ10). The solar PV facility will comprise of arrays of PV panels and associated infrastructure and will have a contracted capacity of up to 100 MW. The project is situated within the City of Matlosana local Municipality within the Dr Kenneth Kaunda District Municipality of the North-West Province of South Africa.

The Applicant, AMDA November (Pty) Ltd, is proposing the construction of a photovoltaic (PV) solar energy facility known as Roan 2 located on portions 4,5,9 and 16 of the Farm 299 approximately 3km south of Hartbeesfontein in the North West Province.

The project is situated within a Renewable Energy Development Zone (REDZ) known as the Klerksdorp REDZ (REDZ10). The solar PV facility will comprise or arrays of PV panels and associated infrastructure and will have a contracted capacity of up to 90 MW. The project is situated within the City of Matlosana local Municipality within the Dr Kenneth Kaunda District Municipality of the North-West Province of South Africa.

An additional 100 MW PV facility known as Roan 1 is concurrently being assessed through a separate Basic Assessment process.

A development footprint of approximately 250ha is being assessed as part of this Basic Assessment Report (BAR) and the infrastructure associated with the 100 MW PV facility includes:

- PV modules and mounting structures;
- Inverters and transformers;
- Cabling;
- Battery Energy Storage System (BESS);
- Site and internal access roads (up to 8 m wide);
- Auxiliary buildings (33 kV switch room, gate-house and security, control centre, office, warehouse, canteen & visitors centre, staff lockers etc.);
- Perimeter fencing and security infrastructure;
- Rainwater tanks;
- Temporary and permanent laydown areas;
- Facility substation.
- Grid connection solution, including:
 - o On Site facility substation
 - On Site Eskom Switching Station
 - An up to 132kV overhead powerline from the on site switching station to the Existing Eskom Roan Substation.

Additional associated infrastructure will also be required for the grid connection solution, including access roads, feeder bays (inclusive of line bays, busbars, bussection and protection equipment), a fibre and optical ground wire (OPGW) layout, insulation and assembly structures.

A grid connection corridor of approximately 300 m wide is being assessed to allow for the optimisation of the grid connection and associated infrastructure., The grid connection infrastructure will be developed within the 300m wide grid connection corridor, which will allow for the avoidance of identified environmental sensitivities. The grid corridor will connect the PV project to the Eskom Roan Substation. The gridline servitude, once registered, will be 31m in width.

1.1 Scope, Purpose and Objectives of this Compliance Statement

The purpose of the statement is to assess the potential impacts of the Roan 2 PV Solar Facility, as well as all associated infrastructure, on avifauna, and to recommend measures, if any, for the mitigation of identified impacts.

1.2 Terms of Reference

The terms of reference for the Compliance Statement are as follows:

- Describe the affected environment from an avifaunal perspective.
- Discuss gaps in baseline data and other limitations.
- Describe the methodology that was used for the field surveys.
- Compare the site sensitivity recorded in the field with the sensitivity classification in the DFFE National Screening Tool and adjust if necessary.
- Provide an overview of all applicable legislation.
- Provide an overview of assessment methodology.
- Identify and assess the potential impacts of the proposed development on avifauna.
- Provide sufficient mitigation measures to include in the Environmental Management Programme (EMPr).
- Conclude with an impact statement.

See Figure 1 for the area covered by the proposed Roan 2 PV facility.

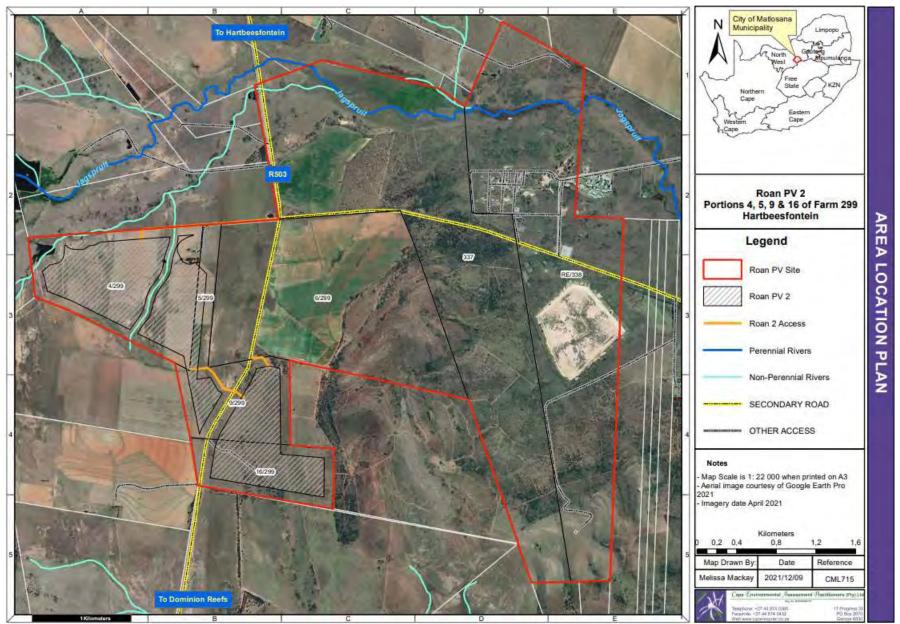


Figure 1: Map of the proposed Roan 2 PV facility.

2 APPROACH AND METHODOLOGY

The below approach was followed to conduct this study:

- Bird distribution data of the South African Bird Atlas 2 (SABAP 2) was obtained from the Animal Demography Unit of the University of Cape Town (ADU 2021), to ascertain which species occurs within the broader area i.e., within a block consisting of 4 pentad grid cells within which the proposed project is situated. A pentad grid cell covers 5 minutes of latitude by 5 minutes of longitude (5'× 5'). Each pentad is approximately 8 × 7.6 km. To date, a total of 172 full protocol lists (i.e., surveys lasting a minimum of two hours each) have been completed for this area. In addition, 45 ad hoc protocol lists (i.e., surveys lasting less than two hours but still yielding valuable data) have been completed.
- The national threatened status of all priority species was determined with the use of the most recent edition of the Red Data Book of Birds of South Africa (Taylor *et al.* 2015), and the latest authoritative summary of southern African bird biology (Hockey *et al.* 2005).
- The global threatened status of all priority species was determined by consulting the (2021.3) IUCN Red List of Threatened Species (http://www.iucnredlist.org/).
- A classification of the vegetation types in the development area was obtained from the Atlas of Southern African Birds 1 (SABAP 1) (Harrison *et al.* 1997) and the National Vegetation Map (2012 beta2) from the South African National Biodiversity Institute website (Mucina & Rutherford 2006 & http://bgisviewer.sanbi.org).
- The Important Bird Areas of Southern Africa (Marnewick *et al.* 2015) was consulted for information on potentially relevant Important Bird Areas (IBAs).
- Satellite imagery (Google Earth ©2021) was used in order to view the broader development area on a landscape level and to help identify sensitive bird habitat.
- The South African National Biodiversity BGIS map viewer was used to determine the locality of the proposed site relative to National Protected Areas.
- The DFFE National Screening Tool was used to determine the assigned avian sensitivity of the proposed development area.
- An on-site survey conducted on 23 December 2021 for purposes of Site Sensitivity Verification. The project site was inspected with a 4x4 vehicle and on foot.
- An additional on-site survey was conducted from 31 January 2 February 2022 at the project site, based on the best practice guidelines for avifaunal impact studies for solar developments, compiled by BirdLife South Africa (BLSA) in 2017 (Jenkins *et al.* 2017). Monitoring was conducted in the following manner:
 - Two drive transects of 4.29 km and 6.1 km respectively were identified in the project site and counted three times over a period of 3 days. One observer driving slowly recorded all birds on both sides of the transect. The observer stopped at regular intervals and moved a distance away from the vehicle to listen to bird calls and to scan the environment with binoculars.
 - The following variables were recorded:
 - Species;
 - Number of birds;
 - Date;
 - Start time and end time;
 - Estimated distance from transect (m);
 - Wind direction;
 - Wind strength (estimated Beaufort scale 1 7);
 - Weather (sunny; cloudy; partly cloudy; rain; mist);
 - Temperature (cold; mild; warm; hot);
 - Behaviour (flushed; flying-display; perched; perched-calling; perched-hunting; flying- foraging; flying- commute; foraging on the ground.
 - All incidental sightings of priority species were recorded.
 - Two focal points of bird activity, namely farm dams, were also monitored during the course of the three day monitoring period.

See Figure 2 below for the extent of the broader area.

Figure 2: Area covered by the broader area (4 x pentad grid cells).

See Figure 3 for the location of drive transects and focal points.

Figure 3: The location of the drive transects relative to the proposed Roan 2 PV site.

2.1 Information Sources

Data / Information	Source	Date	Туре	Description
South African	Department of Forestry, Fisheries and	2021, Q3	Spatial	Spatial delineation of
Protected Areas	the Environment (DFFE)			protected areas in South
Database (SAPAD)				Africa. Updated quarterly
Atlas of Southern	University of Cape Town	1987-1991	Spatial,	SABAP1, which took place
African Birds 1 (SABAP1)			reference	from 1987-1991.
South African Bird	University of Cape Town	February 202	Spatial,	SABAP2 is the follow-up
Atlas Project 2		-	database	project to the SABAP1. The
(SABAP2)				second bird atlas project
				started on 1 July 2007 and is
				still growing. The project aims
				to map the distribution and
				relative abundance of birds in
				southern Africa.
National Vegetation	South African National Biodiversity	2018	Spatial	The National Vegetation Map
Мар	Institute (SANBI) (BGIS)			Project (VEGMAP) is a large
				collaborative project
				established to classify, map
				and sample the vegetation of
				South Africa, Lesotho and
				Swaziland.
Red Data Book of	BirdLife South Africa	2015	Reference	The 2015 Eskom Red Data
Birds of South				Book of Birds of South Africa,
Africa, Lesotho and				Lesotho and Swaziland is an
Swaziland				updated and peer-reviewed
onaziana				conservation status
				assessment of the 854 bird
				species occurring in South
				Africa undertaken in
				collaboration between BirdLife
				South Africa, the Animal
				Demography Unit of the
				University of Cape Town, and
				the SANBI.
IUCN Red List of	IUCN	2021. 1	Online	Established in 1964, the
Threatened		-	reference	International Union for
Species (2021.3)			source	Conservation of Nature's Red
				List of Threatened Species is
				the world's most
				comprehensive information
				source on the global extinction
				risk status of animal, fungus
				and plant species.
Important Bird and	BirdLife South Africa	2015	Reference work	Important Bird and
Biodiversity Areas				Biodiversity Areas (IBAs), as
of South Africa				defined by BirdLife
				International, constitute a
				global network of over 13 500
				sites, of which 112 sites are
				found in South Africa. IBAs
				are sites of global significance
				for bird conservation,
				identified nationally through
				multi-stakeholder processes
				using globally standardised,
				quantitative and scientifically

			-	
Data / Information	Source	Date	Туре	Description
Strategic Environmental Assessment for wind and solar photovoltaic energy in South Africa	Department of Environmental Affairs, 2015. Strategic Environmental Assessment for wind and solar photovoltaic energy in South Africa. CSIR Report Number: CSIR/CAS/EMS/ER/2015/0001/B. Stellenbosch.	2015	SEA	The SEA identifies areas where large scale wind and solar PV energy facilities can be developed in terms of Strategic Infrastructure Project (SIP) 8 and in a manner that limits significant negative impacts on the natural environment, while yielding the highest possible socio- economic benefits to the country. These areas are referred to as Renewable Energy Development Zones (REDZs).
The National Screening Tool	Department of Forestry, Fisheries and the Environment	February 2022	Spatial	The National Web based Environmental Screening Tool is a geographically based web-enabled application which allows a proponent intending to submit an application for environmental authorisation in terms of the Environmental Impact Assessment (EIA) Regulations 2014, as amended to screen their proposed site for any environmental sensitivity.

2.2 Assumptions, Knowledge Gaps and Limitations

This study assumed that the sources of information used in this report are reliable. In this respect, the following must be noted:

- Bird distribution data of the South African Bird Atlas 2 (SABAP 2) was obtained from the Animal Demography Unit of the University of Cape Town (ADU 2021), to ascertain which species occurs within the broader area i.e., within a block consisting of 4 pentad grid cells within which the proposed project is situated. A pentad grid cell covers 5 minutes of latitude by 5 minutes of longitude (5'× 5'). Each pentad is approximately 8 × 7.6 km. To date, a total of 172 full protocol lists (i.e., surveys lasting a minimum of two hours each) have been completed for this area. In addition, 45 ad hoc protocol lists (i.e., surveys lasting less than two hours but still yielding valuable data) have been completed.
- The focus of the study was primarily on the potential impacts of the proposed solar PV facility on priority species.
- Priority species were defined as follows:
 - South African Red Data species.
 - South African endemics and near-endemics.
 - Raptors
 - Waterbirds
- Only one published scientific study on the impact of PV facilities on avifauna in South Africa (Visser *et al.* 2019) currently exists. Some reliance was therefore placed on expert opinion and data from existing monitoring programmes at solar facilities in the USA where monitoring has been ongoing since 2013. The pre-cautionary principle was applied throughout as the full extent of impacts on avifauna at solar facilities is not presently known.
- The assessment of impacts is based on the baseline environment as it currently exists at the study area.
- Conclusions drawn in this study are based on experience of the specialist on the species found on site and similar species in different parts of South Africa. Bird behaviour can never be entirely reduced to formulas that will be valid under all circumstances.
- The **broader area** is defined as the area encompassed by the pentads where the project is located (see Figure 2 above). The **project site** is defined as the combined area (land parcels) where the proposed Roan

2 and Roan 2 PV facilities will be located. The **development area** is the where the Roan 2 development will be located, i.e. the footprint containing the PV solar arrays and associated infrastructure.

3 LEGISLATIVE AND PERMIT REQUIREMENTS

3.1 Legislative Framework

There is no legislation pertaining specifically to the impact of solar facilities and associated electrical grid infrastructure on avifauna. There are best practice guidelines available which were compiled under the auspices of BLSA i.e. Jenkins, A.R., Ralston-Patton, Smit-Robinson, A.H. 2017. *Guidelines for assessing and monitoring the impact of solar power generating facilities on birds in southern Africa*. This guideline has been considered in this assessment.

3.1.1 Agreements and conventions

International agreements and conventions are described in this section.

Table 1: International agreements and conventions which South Africa is party to and which is relevant to the conservation of avifauna.

Convention name	Description	Geographic scope
African-Eurasian Waterbird Agreement (AEWA)	The Agreement on the Conservation of AEWA is an intergovernmental treaty dedicated to the conservation of migratory waterbirds and their habitats across Africa, Europe, the Middle East, Central Asia, Greenland and the Canadian Archipelago. Developed under the framework of the Convention on Migratory Species (CMS) and administered by the United Nations Environment Programme (UNEP), AEWA brings together countries and the wider international conservation community in an effort to establish coordinated conservation and management of migratory waterbirds throughout their entire migratory range.	Regional
Convention on Biological Diversity (CBD), Nairobi, 1992	 The Convention on Biological Diversity (CBD) entered into force on 29 December 1993. It has three main objectives: The conservation of biological diversity; The sustainable use of the components of biological diversity; and The fair and equitable sharing of the benefits arising out of the utilization of genetic resources. 	Global
Convention on the Conservation of Migratory Species of Wild Animals, (CMS), Bonn, 1979	As an environmental treaty under the aegis of the UNEP, CMS provides a global platform for the conservation and sustainable use of migratory animals and their habitats. CMS brings together the States through which migratory animals pass, the Range States, and lays the legal foundation for internationally coordinated conservation measures throughout a migratory range.	Global
Convention on the International Trade in Endangered Species of Wild Flora and Fauna, (CITES), Washington DC, 1973	CITES is an international agreement between governments. Its aim is to ensure that international trade in specimens of wild animals and plants does not threaten their survival.	Global
Ramsar Convention on Wetlands of International Importance, Ramsar, 1971	The Convention on Wetlands, called the Ramsar Convention, is an intergovernmental treaty that provides the framework for national action and international cooperation for the conservation and wise use of wetlands and their resources.	Global

Convention name	Description	Geographic scope
Memorandum of Understanding on the Conservation of Migratory Birds of Prey in Africa and Eurasia	The Signatories will aim to take co-ordinated measures to achieve and maintain the favourable conservation status of birds of prey throughout their range and to reverse their decline when and where appropriate.	Regional

3.1.2 National legislation

3.1.2.1 Constitution of the Republic of South Africa, 1996

The Constitution of the Republic of South Africa provides in the Bill of Rights that: Everyone has the right -

- (a) to an environment that is not harmful to their health or well-being; and
- (b) to have the environment protected, for the benefit of present and future generations, through reasonable legislative and other measures that
 - (i) prevent pollution and ecological degradation;
 - (ii) promote conservation; and
 - (iii) secure ecologically sustainable development and use of natural resources while promoting justifiable economic and social development.

3.1.2.2 The National Environmental Management Act NEMA (Act 107 of 1998, as amended)

The NEMA creates the legislative framework for environmental protection in South Africa and is aimed at giving effect to the environmental right in the Constitution. It sets out a number of guiding principles that apply to the actions of all organs of state that may significantly affect the environment. Sustainable development (socially, environmentally and economically) is one of the key principles, and internationally accepted principles of environmental management, such as the precautionary principle and the polluter pays principle, are also incorporated.

NEMA also provides that a wide variety of listed developmental activities (via the promulgation of the EIA Regulations (2014, as amended), which may significantly affect the environment, may be performed only after an EIA or BA has been undertaken and environmental authorisation has been obtained from the relevant competent authority. Many of these listed activities can potentially have negative impacts on bird populations in a variety of ways. The clearance of natural vegetation, for instance, can lead to a loss of habitat and may depress prey populations, while erecting structures needed for generating and distributing energy, communication, and so forth can cause mortalities by collision or electrocution.

NEMA makes provision for the prescription of procedures for the assessment and minimum criteria for reporting on identified environmental themes (Sections 24(5)(a) and (h) and 44) when applying for environmental authorisation. The Protocol for the specialist assessment and minimum report content requirements for environmental impacts on terrestrial animal species (Government Gazette No 43855, 30 October 2020 is applicable in the case of solar PV developments.

3.1.2.3 The National Environmental Management: Biodiversity Act 10 of 2004 and the Threatened or Protected Species Regulations, February 2007

The most prominent statute containing provisions directly aimed at the conservation of birds is the National Environmental Management: Biodiversity Act (Act 10 of 2004, as amended) read with the Threatened or Protected Species Regulations, February 2007 (TOPS Regulations). Chapter 1 sets out the objectives of the Act, and they are aligned with the objectives of the Convention on Biological Diversity, which are the conservation of biodiversity, the sustainable use of its components, and the fair and equitable sharing of the

benefits of the use of genetic resources. The Act also gives effect to CITES, the Ramsar Convention, and the Bonn Convention on Migratory Species of Wild Animals (as noted in Table 5 above). The State is endowed with the trusteeship of biodiversity and has the responsibility to manage, conserve and sustain the biodiversity of South Africa.

3.1.3 Provincial legislation

3.1.3.1 North-West Biodiversity Management Act, No 4 of 2016

The Act provides for the management and conservation of the North West Province's biophysical environment and protected areas within the framework of the National Environmental Management Act, 1998 (Act No 107 of 1998) including the protection of species and ecological- systems that warrant provincial protection.

4 BASELINE ENVIRONMENTAL DESCRIPTION

4.1 General Description

4.1.1 Important Bird Areas (IBAs)

The Barberspan and Leeupan IBA SA026 is the closest IBA and is located approximately 86km north-west of the site. The proposed development is not expected to have any impact on the avifauna in this IBA due to the distance from the development.

4.1.2 Protected Areas

The site does not form part of a formally protected area. The closest protected area is the Bosworth Private Nature Reserve which is located approximately 21km away at its closest point. The proposed development is not expected to have any impact on the avifauna in this nature reserve due to the distance from the development.

4.1.3 The Strategic Environmental Assessment for Wind and Solar Photovoltaic Energy in South Africa

The site falls within the Klerksdorp REDZ10 Renewable Energy Zone (REDZ).

4.1.4 Bird Habitat

The study area is situated approximately 18.5 km north-west of the town of Klerksdorp, and 5 km south of the town of Hartbeesfontein the North-West Province. It is located in the Grassland Biome, in the Dry Highveld Grassland Bioregion and is situated in area that is made up of a mixture of grassland and thorny woodland. The habitat is quite variable and consists of fallow fields (recovering grassland), natural grassland, shrub- and woodland, some wetland and pans, and some agricultural and industrial activities. Mucina & Rutherford (2006) classifies the area as mixture between Vaal-Vet Sandy Grassland (an Endangered vegetation type) and Klerksdorp Thornveld.

There is a riparian zone, the Jagspruit River and its floodplain and wetlands, in the north of the study area. The is also a scattering of artificial wetlands, pans, and round cement dams. The western half of the study area, where the proposed Roan 2 development area is located, consists mainly of grassland interspersed with small areas of woodland, and large areas devoted to agriculture.

The Klerksdorp area has a semi-arid climate (according to the Köppen-Geiger climate classification), with warm to hot summers and cool, dry winters. The average annual precipitation is 482 mm, with most of the rainfall occurring during summer. It should be noted that images from the field survey were created in the rainy season (i.e., summer).

The following distinct habitat features are present in or in the immediate vicinity of the development area:

- Grassland
- Woodland
- Rivers and Wetlands
- Pans and Dams
- Agriculture

4.1.4.1 Grassland

SABAP1 recognises six primary vegetation divisions within South Africa, namely (1) Fynbos (2) Succulent Karoo (3) Nama Karoo (4) Grassland (5) Savanna and (6) Forest (Harrison *et al.* 1997). The criteria used by the authors to amalgamate botanically defined vegetation units, or to keep them separate were (1) the existence of clear differences in vegetation structure, likely to be relevant to birds, and (2) the results of published community studies on bird/vegetation associations. It is important to note that no new vegetation unit boundaries were created, with use being made only of previously published data (Harrison *et al.* 1997).

Grassland is dominated by grasses, with geophytes and herbs also well represented. Grasslands are maintained by a combination of relatively high summer rainfall, frequent fires, frost, and grazing, which prevent the presence of shrubs and trees (Harrison *et al.* 1997).

The following priority species with a medium to high likelihood of occurrence could potentially use the grassland in the development area:

- African Sacred Ibis
- Amur Falcon
- Black-headed Heron
- Blacksmith Lapwing
- Black-winged Kite
- Cloud Cisticola
- Common Buzzard
- Lesser Kestrel
- Pied Starling
- South African Cliff Swallow
- Western Barn Owl
- Western Cattle Egret

4.1.4.2 Woodland

The dominant habitat in the development area is mainly woodland and thornveld. Woodlands can be important nesting areas for avian species. The woodland areas consist of mainly fine-leaved, semi-deciduous Vachellia-dominated habitat.

The following priority species with a medium to high likelihood of occurrence could potentially use the woodland in the development area:

- Black-winged Kite
- Common Buzzard
- Fiscal Flycatcher
- Karoo Thrush
- Western Barn Owl

4.1.4.3 Rivers and wetlands

Rivers and wetlands are important habitats, especially for priority species. There are a number of wetlands scattered across the study area. These provide habitat for waterfowl, waders and reedbed dwellers such as rails and crakes. There is riparian zone, the Jagspruit River, and its floodplain and wetlands, bordering on the development area in the north.

The following priority species with a medium to high likelihood of occurrence could potentially use the riverine habitat and wetlands in close proximity the development area:

- Fiscal Flycatcher
- Glossy Ibis
- Great Crested Grebe
- Grey Heron
- Kittlitz's Plover
- Little Egret
- Little Grebe
- Little Stint
- Marsh Sandpiper
- Red-billed Teal
- Red-knobbed Coot
- Reed Cormorant
- Ruff
- South African Cliff Swallow
- South African Shelduck
- Southern Pochard
- Spur-winged Goose
- Three-banded Plover
- Western Cattle Egret
- Whiskered Tern
- White-breasted Cormorant
- White-faced Whistling Duck
- Wood Sandpiper
- Yellow-billed Duck

4.1.4.4 Pans, dams and water reservoirs

Surface water is of importance to avifauna in this semi-arid area. The study area contains a few small seasonal pans and some artificial impoundments (ground dams and water reservoirs) which provide habitat for waterbirds. Some of these are located in (water reservoirs) or near (pans) the development area.

The following priority species with a high or medium likelihood of occurrence could use pans and dams in the development area:

- African Sacred Ibis
- African Spoonbill
- Red-knobbed Coot
- Blacksmith Lapwing
- Black-winged Stilt
- Cape Shoveler
- Cape Teal
- Egyptian Goose
- Grey Heron

- Little Grebe
- Common Buzzard
- Kittlitz's Plover
- Little Stint
- Marsh Sandpiper
- Red-billed Teal
- Reed Cormorant
- South African Shelduck
- Southern Pochard
- Spur-winged Goose
- Three-banded Plover
- Whiskered Tern
- White-breasted Cormorant
- White-faced Whistling Duck
- Wood Sandpiper
- Yellow-billed Duck

4.1.4.5 Agriculture

There is some agricultural activity within the development area. The fields are mainly used for crop production. Certain bird species have adapted to, and some even thrive, in agricultural habitats.

The following species with a high or medium likelihood of occurrence could use agricultural lands in the development area:

- African Sacred Ibis
- Amur Falcon
- Blacksmith Lapwing
- Egyptian Goose
- Black-winged Kite
- Common Buzzard
- Lesser Kestrel
- Pied Starling
- Spur-winged Goose
- Western Cattle Egret
- Western Barn Owl

4.1.5 Avifauna

4.1.5.1 Southern African Bird Atlas 2

A total of 268 species could potentially occur within the broader where the project is located (see Appendix B). Of these, 97 are classified as priority species. Of the 97 priority species, 38 have a medium to high probability of occurring in the development area. Of the 38 priority species with a medium to high probability of occurrence, 14 were recorded during site surveys.

All the species of conservation concern (SSC) recorded in the broader area by SABAP2 (Lanner Falcon, Secretarybird, Verreaux's Eagle), except one (Yellow-billed Stork), have a full protocol reporting rates of less than 1%, indicating vagrant status in the area. Yellow-billed Stork has a reporting rate of 1.74%, which is also very low.

One SSC was recorded at the Roan 2 development area during surveys¹.

The probability of a priority species occurring regularly in the study area is indicated in Table 2.

Table 2 below lists all the priority species and the possible impact on the respective species by the proposed Roan 2 PV facility and associated infrastructure.

EN = Endangered, VU = Vulnerable, NT = Near threatened, LC = least concern, L= Low, M = Medium H = High

¹ A Martial Eagle was recorded in the project site, in the Roan 2 development area, but the species was not recorded by SABAP2, indicating vagrant status.

Table 2: Priority species occurring in the broader area with a medium to high likelihood of regular occurrence in the development area.

Species name	Scientific name	Full protocol reporting rate %	Ad hoc protocol reporting rate %	IUCN Red Data status	SA Red Data status	Likelihood of regular occurrence	Grassland (natural and recovering)	Woodland	Rivers and wetlands	Pans, dams, water reservoirs	Agriculture	Industrial (incl alien trees)	Solar priority	Recorded during monitoring	Solar - Collisions with solar panels	Solar - Displacement: Disturbance	Solar - Displacement: Habitat transformation	Solar - Entanglement in fences	Powerline - Electrocution Substations	HV Powerline - Collision
African Sacred Ibis	Threskiornis aethiopicus	19.77	6.67	LC	-	М	Х		х	х	х		х							Х
African Spoonbill	Platalea alba	15.70	0.00	LC	-	Μ			Х	Х			Х		Х					х
Amur Falcon	Falco amurensis	8.72	0.00	LC	-	М	Х				Х	Х	Х	Х	Х		Х		Х	
Black-headed Heron	Ardea melanocephala	23.84	4.44	LC	-	Μ	Х		х			Х	Х				х	Х	Х	х
Blacksmith Lapwing	Vanellus armatus	88.37	15.56	LC	-	Н	х		х	х	х		х	х			х		Х	х
Black-winged Kite	Elanus caeruleus	36.63	8.89	LC	-	Н	х	х			Х	Х	х	х		х	x		х	
Black-winged Stilt	Himantopus himantopus	42.44	2.22	LC	-	Μ			х	х			х		х					
Cape Shoveler	Spatula smithii	29.65	4.44	LC	-	Μ			х	х			х		х					x
Cape Teal	Anas capensis	13.95	0.00	LC	-	Μ			х	х			х		х					x
Cloud Cisticola	Cisticola textrix	11.63	0.00	LC	-	М	Х						х	х	х	х	х			
Common Buzzard	Buteo buteo	5.23	2.22	LC	-	М	Х	х		х	х	х	х	х			х		х	
Egyptian Goose	Alopochen aegyptiaca	76.16	13.33	LC	-	Н			х	х	х		х		х				х	x
Fiscal Flycatcher	Melaenornis silens	63.95	4.44	LC	-	Н		х				х	х	х		х				
Glossy Ibis	Plegadis falcinellus	27.33	8.89	LC	-	Μ			х				х							x
Grey Heron	Ardea cinerea	29.65	11.11	LC	-	М			х	х			х		х					x
Karoo Thrush	Turdus smithi	30.23	6.67	LC	-	М		х				х	х			х	х			
Kittlitz's Plover	Charadrius pecuarius	26.16	0.00	LC	-	Μ			х	х			х		х					
Lesser Kestrel	Falco naumanni	7.56	2.22	LC	-	М	Х				х	Х	х	х	х		х		х	
Little Grebe	Tachybaptus ruficollis	43.60	4.44	LC	-	М				х			х	х	х					х
Little Stint	Calidris minuta	24.42	2.22	LC	-	М			х	Х			х		х					
Marsh Sandpiper	Tringa stagnatilis	15.70	4.44	LC	-	М			х	х			х		х					
Pied Starling	Lamprotornis bicolor	34.88	4.44	LC	-	Н	х				х		х	х	х		х			
Red-billed Teal	Anas erythrorhyncha	45.93	8.89	LC	-	Н			х	х			х	х	х					х
Red-knobbed Coot	Fulica cristata	75.00	13.33	LC	-	М				х			х		х					х
Reed Cormorant	Microcarbo africanus	32.56	6.67	LC	-	М			х	х			х		х					х
Ruff	Calidris pugnax	23.26	0.00	LC	-	М			х				х		х					

Species name	Scientific name	Full protocol reporting rate %	Ad hoc protocol reporting rate %	IUCN Red Data status	SA Red Data status	Likelihood of regular occurrence	Grassland (natural and recovering)	Woodland	Rivers and wetlands	Pans, dams, water reservoirs	Agriculture	Industrial (incl alien trees)	Solar priority	Recorded during monitoring	Solar - Collisions with solar panels	Solar - Displacement: Disturbance	Solar - Displacement: Habitat transformation	Solar - Entanglement in fences	Powerline - Electrocution MV Substation	HV Powerline - Collision HV
South African Cliff Swallow	Petrochelidon spilodera	48.26	11.11	LC	_	н	x						х	x	х		x			
South African Shelduck	Tadorna cana	59.88	4.44	LC	_	н	~		х	x			x	~	x		~			x
Southern Pochard	Netta erythrophthalma	24.42	6.67	LC	-	М			х	Х			х	х	х					х
Spur-winged Goose	Plectropterus gambensis	22.67	0.00	LC	-	М			х	Х	х		х	х	х					x
Three-banded Plover	Charadrius tricollaris	44.19	6.67	LC	-	Μ			х	Х			x		х					
Western Barn Owl	Tyto alba	5.81	2.22	LC	-	Μ	Х	х			х	х	х		х		х	х		
Western Cattle Egret	Bubulcus ibis	65.70	8.89	LC	-	Н	х		х		х		x		х				х	
Whiskered Tern	Chlidonias hybrida	25.58	2.22	LC	-	Μ			х	х			x		х					
White-breasted Cormorant	Phalacrocorax lucidus	19.19	2.22	LC	-	М			x	x			x		x					x
White-faced Whistling Duck	Dendrocygna viduata	15.70	4.44	LC	-	М			х	x			х		x					x
Wood Sandpiper	Tringa glareola	20.93	4.44	LC	-	М			х	х			х		х					
Yellow-billed Duck	Anas undulata	70.35	13.33	LC	-	М			х	х			x	х	x					x

4.1.5.2 Pre-construction surveys

As noted above, surveys were conducted from 31 January – 2 February 2022 at the project site, during the high (wet) season. Surveys were conducted according to a Regime 1 site (low sensitivity) as defined in the best practice guidelines for avifaunal impact studies at solar developments, compiled by BLSA in 2017 (Jenkins *et al.* 2017).²

The abundance of priority species (Index of Kilometric Abundance i.e. birds/km = IKA) recorded during the drive transects in the project site is displayed in Figure 4 below.

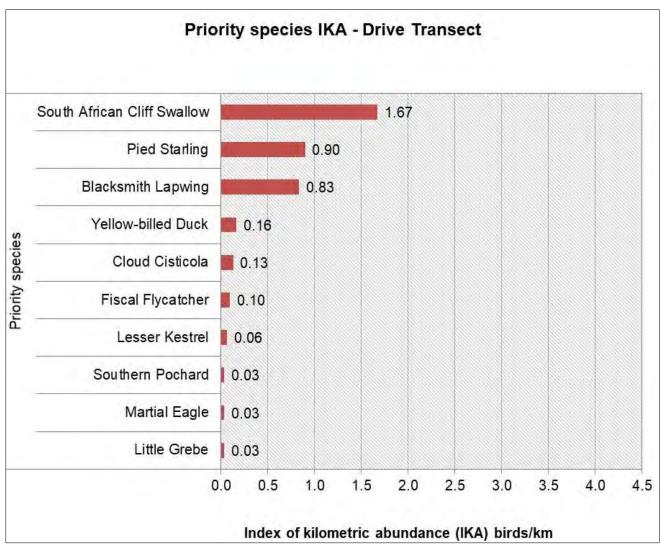


Figure 4: The abundance of priority species recorded during transect counts in the project site.

² It should be noted that the sensitivity criteria in the best practice guidelines for avifaunal impact studies for solar developments, compiled by BirdLife South Africa (BLSA) in 2017 (Jenkins *et al.* 2017) differs from the sensitivity criteria in Protocol for the Specialist Assessment and Minimum Report Content Requirements for Environmental Impacts on Terrestrial Animal Species which was published in October 2020.

Table 3 lists the priority species which were recorded as incidental records in the project site.

Species	Sci name	Total
Amur Falcon	Falco amurensis	1
Black-winged Kite	Elanus caeruleus	1
Common Buzzard	Buteo buteo	2
Lesser Kestrel	Falco naumanni	2
Spur-winged Goose	Plectropterus gambensis	1

Table 3: Priority species which were recorded as incidental records in the project site.

The overall abundance of priority species at the project site was moderate, with an average of 3.95 birds/km recorded during drive transect counts.

See Figure 5 for the location of priority species recorded during the surveys.

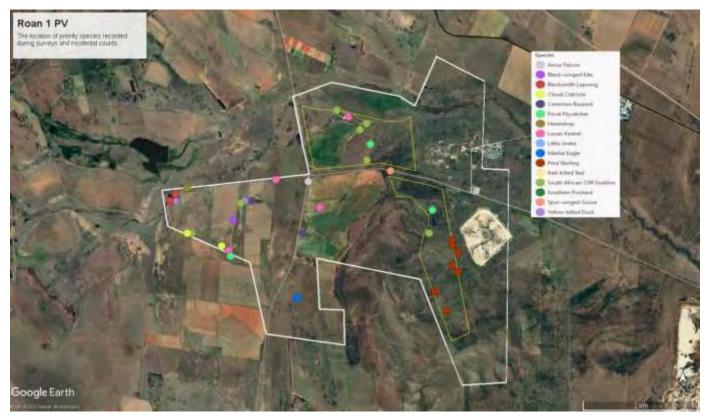


Figure 5: Priority species recorded during surveys.

5 IDENTIFICATION OF ENVIRONMENTAL SENSITIVITIES

5.1 Sensitivities identified by the National Web-Based Environmental Screening Tool

The study area and immediate environment is classified as **Low** sensitivity for terrestrial animals according to the Terrestrial Animal Species Theme³ (see Figure 6). The medium sensitivity classification is not linked to avifauna. The project site contains marginal habitat for species of conservation concern (SCC) as defined in the Protocol for the specialist assessment and minimum report content requirements for environmental impacts on terrestrial animal species (Government Gazette No 43855,

³ Note that the Avian theme for PV in the Screening Tool is incorrect, as it displays the sensitivities for bats, and not birds.

30 October 2020, namely listed on the IUCN Red List of Threatened Species or South Africa's National Red List website as Critically Endangered, Endangered or Vulnerable. The virtual absence of SCC was confirmed during the project site surveys. Based on these criteria, the study area is correctly classified as **Low** sensitivity for avifauna. See Appendix E for the Site Sensitivity Report.

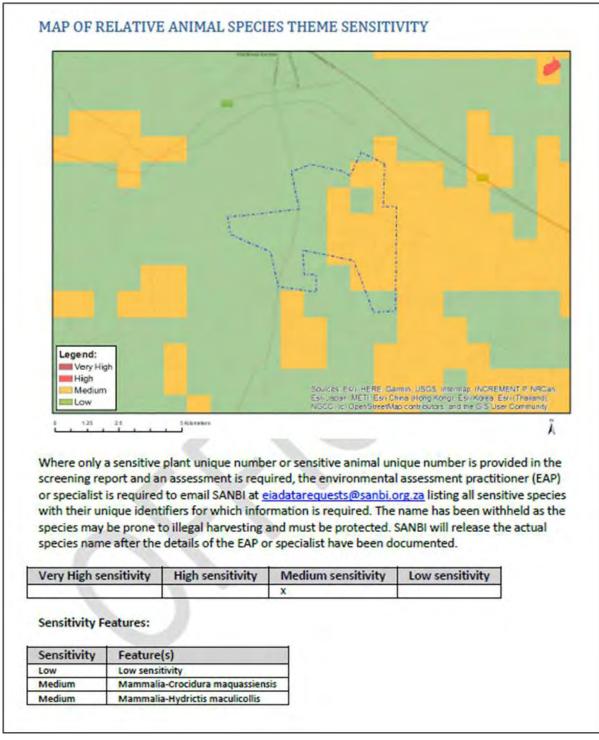


Figure 6: The National Web-Based Environmental Screening Tool map of the project site, indicating sensitivities for the Terrestrial Animal Species theme. The medium sensitivity is not related to avifauna.

5.2 Specialist Sensitivity Analysis and Verification

The following environmental sensitivities were identified at the proposed Roan 2 PV facility:

5.2.1 Pans, dams and water reservoirs (waterbodies): Very High sensitivity (Solar panel exclusion zone)

Included are areas within 100m of waterbodies and wetlands. Wetlands and waterbodies are crucially important for priority avifauna, particularly waterbirds, and many non-priority species. It is therefore important to leave open space for birds to access and leave the waterbodies unhindered. No solar panels should be constructed in these areas, and other infrastructure should be limited to what is absolutely essential.

5.2.2 Rivers and wetlands: Very High sensitivity (Solar panel exclusion zone)

Included are areas within 100m of rivers and wetlands. These areas are important for priority avifauna and many non-priority species. It is important to leave open space for birds to access and leave the riverine areas and wetlands unhindered. No solar panels should be constructed in these areas, and other infrastructure should be limited to what is absolutely essential.

 Rear 1 PV
 Up of the start grand block one start

 In the start grand block one start
 Start grand block one start

 In the start grand block one start
 Start grand block one start

 In the start grand block one start
 Start grand block one start

 In the start grand block one start
 Start grand block one start

 In the start grand block one start
 Start grand block one start

 In the start grand block one start
 Start grand block one start

 In the start grand block one start
 Start grand block one start

See Figure 7 for avifaunal solar panel no-go buffers at the site.

Figure 7: Avifaunal solar panel no-go buffer zones at the site.

6 ISSUES, RISKS AND IMPACTS

6.1 Identification of Potential Impacts/Risks

The potential impacts identified in the course of the study are:

6.1.1 Construction Phase

 Displacement due to disturbance and habitat transformation associated with the construction of the solar PV plant and associated infrastructure.

6.1.2 Operational Phase

- Collisions with the solar panels
- Entrapment in perimeter fences
- Electrocutions in the onsite substations
- Collisions with the 132kV grid connection

6.1.3 Decommissioning Phase

 Displacement due to disturbance associated with the decommissioning of the solar PV plant and associated infrastructure.

7 IMPACT ASSESSMENT

7.1 Introduction

Increasingly, human-induced climate change is recognized as a fundamental driver of biological processes and patterns. Historic climate change is known to have caused shifts in the geographic ranges of many plants and animals, and future climate change is expected to result in even greater redistributions of species (National Audubon Society 2015). In 2006, the World Wide Fund for Nature (WWF) Australia produced a report on the envisaged impact of climate change on birds worldwide (Wormworth & Mallon, 2006). The report found that:

- Climate change now affects bird species' behaviour, ranges and population dynamics;
- Some bird species are already experiencing strong negative impacts from climate change; and
- In future, subject to greenhouse gas emissions levels and climatic response, climate change will put large numbers of bird species at risk of extinction, with estimates of extinction rates varying from 2 to 72%, depending on the region, climate scenario and potential for birds to shift to new habitat.

Using statistical models based on the North American Breeding Bird Survey and Audubon Christmas Bird Count datasets, the National Audubon Society assessed geographic range shifts through the end of the century for 588 North American bird species during both the summer and winter seasons under a range of future climate change scenarios (National Audubon Society 2015). Their analysis showed the following:

- 314 of 588 species modelled (53%) lose more than half of their current geographic range in all three modelled scenarios.
- For 126 species, loss occurs without accompanying range expansion.
- For 188 species, loss is coupled with the potential to colonize new areas.

Climate sensitivity is an important piece of information to incorporate into conservation planning and adaptive management strategies. The persistence of many birds will depend on their ability to colonize climatically suitable areas outside of current ranges and management actions that target climate change adaptation.

South Africa is among the world's top 10 developing countries required to significantly reduce their carbon emissions (Seymore *et al.* 2014), and the introduction of low-carbon technologies into the country's compliment of power generation will greatly assist with achieving this important objective (Walwyn & Brent 2015). Given that South Africa receives among the highest levels of solar radiation on earth (Fluri 2009; Munzhedi & Sebitosi. 2009), it is clear that solar power generation should feature

prominently in future efforts to convert to a more sustainable energy mix in order to combat climate change, also from an avifaunal impact perspective. However, while the expansion of solar power generation is undoubtedly a positive development for avifauna in the longer term in that it will help reduce the effect of climate change and thus habitat transformation, it must also be acknowledged that renewable energy facilities, including solar PV facilities, in themselves have some potential for negative impacts on avifauna.

A literature review reveals a scarcity of published, scientifically examined information regarding largescale PV plants and birds. The reason for this is mainly that large-scale PV plants are a relatively recent phenomenon. The main source of information for these types of impacts are from compliance reports and a few government-sponsored studies relating to recently constructed solar plants in the south-west United States. In South Africa, only one published scientific study has been completed on the impacts of PV plants in a South African context (Visser *et al.* 2019).

7.2 Impacts associated with PV plants and associated infrastructure

7.2.1 Impact trauma (collisions)

This impact refers to collision-related fatality i.e. fatality resulting from the direct contact of the bird with a project structure(s). This type of fatality has been occasionally documented at solar projects of all technology types (McCrary *et al.* 1986; Hernandez *et al.* 2014; Kagan *et al.* 2014). In some instances, the bird is not killed outright by the collision impact, but succumbs to predation later, as it cannot avoid predators due to its injured state.

Sheet glass used in commercial and residential buildings has been well established as a hazard for birds. When the sky is reflected in the sheet glass, birds fail to see the building as an obstacle and attempt to fly through the glass, mistaking it for empty space (Loss *et al.* 2014). Although very few cases have been reported it is possible that the reflective surfaces of solar panels could constitute a similar risk to avifauna.

An extremely rare but potentially related problem is the so-called "lake effect" i.e. it seems possible that reflections from solar facilities' infrastructure, particularly large sheets of dark blue photovoltaic panels, may attract birds in flight across the open desert, who mistake the broad reflective surfaces for water (Kagan et al. 2014)⁴. The unusually high percentage of waterbird mortalities at the Desert Sunlight PV facility in California (44%) may support the "lake effect" hypothesis (West 2014). Although in the case of Desert Sunlight, the proximity of evaporation ponds may act as an additional risk increasing factor, in that birds are both attracted to the water feature and habituated to the presence of an accessible aquatic environment in the area. This may translate into the misinterpretation of diffusely reflected sky or horizontal polarised light source as a body of water. However, due to limited data it would be premature to make any general conclusions about the influence of the lake effect or other factors that contribute to fatality of water-dependent birds. The activity and abundance of water-dependent species near solar facilities may depend on other site-specific or regional factors, such as the surrounding landscape (Walston et al. 2015). Kosciuch et al. (2020) analysed the results from fatality monitoring studies at 10 photovoltaic solar facilities across 13 site years in the Sonoran and Mojave Deserts Bird Conservation Region in California and Nevada in the USA. They found no evidence of mass mortality related to the lake effect despite the occurrence of water water-obligate birds, which rely on water for take-off and landing, occurring at 90% (9/10) of site-years in the Sonoran and Mojave Deserts Bird Conservation Region. However, until such time that enough scientific evidence has been collected to discount the "lake effect" hypothesis completely, it must be considered as a potential source of impacts.

⁴ This could either result in birds colliding directly with the solar panels or getting stranded and unable to take off again because many aquatic bird species find it very difficult and sometimes impossible to take off from dry land e.g. grebes and cormorants. This exposes them to predation, even if they do not get injured through direct collisions with the panels.

Weekly mortality searches at 20% coverage were conducted at the 250MW, 1300ha California Valley Solar Ranch PV site (Harvey & Associates 2014a and 2014b). According to the information that could be sourced from the internet (two quarterly reports), 152 avian mortalities were reported for the period 16 November 2013 – 15 February 2014, and 54 for the period 16 February 2014 – 15 May 2014, of which approximately 90% were based on feather spots which precluded a finding on the cause of death. These figures give an estimated unadjusted 1 030 mortalities per year, which is obviously an underestimate as it does not include adjustments for carcasses removed by scavengers and missed by searchers. The authors stated clearly that these quarterly reports do not include the results of searcher efficiency trials, carcass removal trials, or data analyses, nor does it include detailed discussions.

In a report by the National Fish and Wildlife Forensic Laboratory (Kagan *et al.* 2014), the cause of avian mortalities was estimated based on opportunistic avian carcass collections at several solar facilities, including the 550MW, 1 600ha Desert Sunlight PV plant. Impact trauma emerged as the highest identifiable cause of avian mortality, but most mortality could not be traced to an identifiable cause.

Walston *et al.* (2015) conducted a comprehensive review of avian fatality data from large scale solar facilities (all technology types) in the USA. Collision as cause of death (19 birds) ranked second at Desert Sunlight PV plant and California Valley Solar Ranch (CVSR) PV plant, after unknown causes. Cause of death could not be determined for over 50% of the fatality observations and many carcasses included in these analyses consisted only of feather spots (feathers concentrated together in a small area) or partial carcasses, thus making determination of cause of death difficult. It is anticipated that some unknown fatalities were caused by predation or some other factor unrelated to the solar project. However, they found that the lack of systematic data collection and standardization was a major impediment in establishing the actual extent and causes of fatalities across all projects.

The only scientific investigation of potential avifaunal impacts that has been performed at a South African PV facility was completed in 2016 at the 96MW Jasper PV solar facility (28°17′53″S, 23°21′56″E) which is located on the Humansrus Farm, approximately 4 km south-east of Groenwater and 30km east of Postmasburg in the Northern Cape Province (Visser et al. 2019). The Jasper PV facility contains 325 360 solar panels over a footprint of 180 hectares with the capacity to deliver 180 000 MWh of renewable electricity annually. The solar panels face north at a fixed 20° angle, reaching a height of approximately 1.86 m relative to ground level with a distance of 3.11 m between successive rows of panels. Mortality surveys were conducted from the 14th of September 2015 until the 6th of December 2015, with a total of seven mortalities recorded among the solar panels which gives an average rate of 0.003 birds per hectare surveyed per month. All fatalities were inferred from feather spots. Extrapolated bird mortality within the solar field at the Jasper PV facility was 435 birds/yr (95% CI 133 - 805). The broad confidence intervals result from the small number of birds detected. The mortality estimate is likely conservative because detection probabilities were based on intact birds, and probably decrease for older carcasses and feather spots. The study concluded inter alia that the short study period, and lack of comparable results from other sources made it difficult to provide a meaningful assessment of avian mortality at PV facilities. It further stated that despite these limitations, the few bird fatalities that were recorded might suggest that there is no significant collision-related mortality at the study site. The conclusion was that to fully understand the risk of solar energy development on birds, further collation and analysis of data from solar energy facilities across spatial and temporal scales, based on scientifically rigorous research designs, is required (Visser et al. 2019).

The results of the available literature lack compelling evidence of collisions as a cause of large-scale mortality among birds at PV facilities. However, it is clear from this limited literature survey that the lack of systematic and standardised data collection is a major problem in the assessment of the causes and extent of avian mortality at all types of solar facilities, regardless of the technology employed (Kosciuch *et al.* 2020). Until statistically tested results emerge from existing compliance programmes and more dedicated scientific research, conclusions will inevitably be largely based on professional opinion.

Based on the lack of evidence to the contrary, it is not foreseen that collisions with the solar panels at the PV facility will be a significant impact. The priority species which would most likely be potentially affected by this impact are mostly small, ground-dwelling birds which forage between the solar panels, and a variety of waterbirds which may be potentially at risk due to the "lake effect".

See Table 2 for list of priority species which could potentially be affected by this impact.

7.2.2 Entrapment in perimeter fences

Visser *et al.* 2019 recorded a fence-line fatality (Orange River Francolin *Scleroptila gutturalis*) resulting from the bird being trapped between the inner and outer perimeter fence of the facility. This was further supported by observations of large-bodied birds unable to escape from between the two fences (e.g. Red-crested Korhaan *Lophotis ruficrista*) (Visser *et al.* 2019). Considering that one would expect the birds to be able to take off in the lengthwise direction (parallel to the fences), it seems possible that the birds panicked when they were approached by observers and thus flew into the fence. Another potential problem is birds, particularly owls, that get stuck between the strands of barbed wire fences.

It is not foreseen that entrapment in perimeter fences will be a significant impact for priority species at the PV facility.

See Table 2 for list of priority species which could potentially be affected by this impact.

7.2.3 Displacement due to disturbance and habitat transformation associated with the construction and operation of the solar PV facilities.

Ground-disturbing activities affect a variety of processes in arid areas, including soil density, water infiltration rate, vulnerability to erosion, secondary plant succession, invasion by exotic plant species, and stability of cryptobiotic soil crusts. These processes have the ability – individually and together – to alter habitat quality, often to the detriment of wildlife, including avifauna. Any disturbance and alteration to the semi-desert landscape, including the construction and decommissioning of utility-scale solar energy facilities, has the potential to increase soil erosion. Erosion can physically and physiologically affect plant species and can thus adversely influence primary production and food availability for wildlife (Lovich & Ennen 2011).

Solar energy facilities require substantial site preparation (including the removal of vegetation) that alters topography and, thus, drainage patterns to divert the surface flow associated with rainfall away from facility infrastructure. Channelling runoff away from plant communities can have dramatic negative effects on water availability and habitat quality in arid areas. Areas deprived of runoff from sheet flow support less biomass of perennial and annual plants relative to adjacent areas with uninterrupted water-flow patterns (Lovich & Ennen 2011).

The activities listed below are *typically* associated with the construction and operation of solar facilities and could have direct impacts on avifauna (County of Merced 2014):

- Preparation of solar panel areas for installation, including vegetation clearing, grading, cut and fill;
- Excavation/trenching for water pipelines, cables, fibre-optic lines, and the septic system;
- Construction of piers and building foundations;
- Construction of new dirt or gravel roads and improvement of existing roads;
- Temporary stockpiling and side-casting of soil, construction materials, or other construction wastes;
- Soil compaction, dust, and water runoff from construction sites;
- Increased vehicle traffic;
- Short-term construction-related noise (from equipment) and visual disturbance;
- Degradation of water quality in drainages and other water bodies resulting from project runoff;
- Maintenance of fire breaks and roads; and

 Weed removal, brush clearing, and similar land management activities related to the ongoing operation of the project.

These activities could have an impact on birds breeding, foraging and roosting in or in close proximity through disturbance and transformation of habitat, which could result in temporary or permanent displacement.

In a study comparing the avifaunal habitat use in PV arrays with adjoining managed grassland at airports in the USA, DeVault *et al.* (2014) found that species diversity in PV arrays was reduced compared to the grasslands (37 vs 46), supporting the view that solar development is generally detrimental to wildlife on a local scale.

In order to identify functional and structural changes in bird communities in and around the development footprint, Visser *et al.* (2019) gathered bird transect data at the 180 hectares, 96MW Jasper PV solar facility in the Northern Cape, representing the solar development, boundary, and untransformed landscape. The study found both bird density and diversity per unit area was higher in the boundary and untransformed landscape, however, the extent therefore was not considered to be statistically significant. This indicates that the PV facility matrix is permeable to most species. However, key environmental features, including available habitat and vegetation quality are most likely the overriding factors influencing species' occurrence and their relative density within the development footprint. The most significant finding of Visser *et al.* (2019) was that the distribution of birds in the landscape changed, from a shrubland to open country and grassland bird community, in response to changes in the distribution and abundance of habitat resources such as food, water and nesting sites. These changes in resource availability patterns were detrimental to some bird species and beneficial to others. Shrubland specialists appeared to be negatively affected by the presence of the PV facility. In contrast, open country/grassland and generalist species, were favoured by its development (Visser *et al.* 2019).

As far as <u>disturbance</u> is concerned, it is likely that all the avifauna, including all the priority species, will be temporarily displaced in the footprint area of the proposed project, either completely or more likely partially (reduced densities) during the construction phase, due to the disturbance associated with the construction activities. This is likely to affect breeding residents most.

As far as displacement, either completely or partially (reduced densities) due to <u>habitat loss and</u> <u>transformation</u> is concerned, it is highly likely that the same pattern of reduced avifaunal densities, perhaps more so for shrubland species than grassland species, as explained above, will manifest itself at the proposed project. In addition, raptors and terrestrial species could also be impacted.

See Table 2 for list of priority species which could potentially be affected by this impact.

7.2.4 Electrocutions

Electrocution refers to the scenario where a bird is perched or attempts to perch on the electrical structure and causes an electrical short circuit by physically bridging the air gap between live components and/or live and earthed components (van Rooyen 2004). The electrocution risk is largely determined by the design of the electrical hardware. There could be an electrocution risk to certain species, mostly raptors, but also some waterbirds, in the onsite substations, but it is unlikely to be a regular occurrence for any of the priority species.

See Table 2 for list of priority species which could potentially be affected by this impact.

7.2.5 Collisions

Collisions are the biggest threat posed by high voltage lines to birds in southern Africa (van Rooyen, 2004). Most heavily impacted upon are bustards, storks, cranes and various species of waterbirds, and

to a lesser extent, vultures. These species are mostly heavy-bodied birds with limited manoeuvrability, which makes it difficult for them to take the necessary evasive action to avoid colliding with transmission lines (van Rooyen, 2004).

From incidental record keeping by the Endangered Wildlife Trust, it is possible to give a measure of what species are generally susceptible to power line collisions in South Africa (see Figure 8 below).

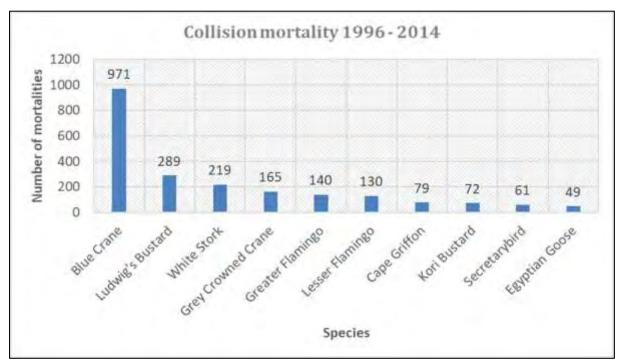


Figure 8: The top 10 collision prone bird species in South Africa, in terms of reported incidents contained in the Eskom/Endangered Wildlife Trust Strategic Partnership central incident register 1996 - 2014 (EWT unpublished data)

There are many studies which prove that marking a line with PVC spiral type Bird Flight Diverters (BFDs) generally reduce mortality rates (e.g. Bernardino *et al.*, 2018; Sporer *et al.* 2013, Barrientos *et al.* 2011; Jenkins *et al.* 2010; Alonso & Alonso, 1999; Koops & De Jong, 1982). Beaulaurier (1981) summarised the results of 17 studies that involved the marking of earth wires and found an average reduction in mortality of 45%. Barrientos *et al.* (2011) reviewed the results of 15 wire marking experiments in which transmission or distribution wires were marked to examine the effectiveness of flight diverters in reducing bird mortality. The presence of flight diverters was associated with a decrease of 55–94% in bird mortalities. Koops and De Jong (1982) found that the spacing of the BFDs was critical in reducing the mortality rates - mortality rates are reduced up to 86% with a spacing of 5m, whereas using the same devices at 10m intervals only reduces the mortality by 57%. Barrientos *et al.* (2012) found that larger BFDs were more effective in reducing Great Bustard collisions than smaller ones. Line markers should be as large as possible, and highly contrasting with the background. Colour is probably less important as during the day the background will be brighter than the obstacle with the reverse true at lower light levels (e.g. at twilight, or during overcast conditions). Black and white interspersed patterns are likely to maximise the probability of detection (Martin *et al.* 2010).

Using a controlled experiment spanning a period of nearly eight years (2008 to 2016), the Endangered Wildlife Trust (EWT) and Eskom tested the effectiveness of two types of line markers in reducing power line collision mortalities of large birds on three 400kV transmission lines near Hydra substation in the Karoo. Marking was highly effective for Blue Cranes *Anthropoides paradiseus*, with a 92% reduction in mortality, and large birds in general with a 56% reduction in mortality, but not for bustards, including the endangered Ludwig's Bustard (*Neotis ludwigii*). The two different marking devices were approximately equally effective, namely spirals and bird flappers, they found no evidence supporting the preferential use of one type of marker over the other (Shaw *et al.* 2018).

See Table 2 for list of priority species which could potentially be affected by this impact.

7.3 No-go option

The no-go option will result in no additional impacts on avifauna and will result in the ecological status quo being maintained, which will be to the advantage of the avifauna. However, no fatal flaws were identified during the investigations.

8 IMPACT RATING METHODOLOGY

See Appendix D for the explanation of the impact criteria.

9 IMPACT RATING METHODOLOGY

Then tables below summarise the potential impacts on avifauna of the proposed Roan 2 PV project.

9.1 Construction Phase

Displacement of priority species due to disturbance and habitat transformation associated with construction of the PV plant and associated infrastructure					
Intensity	High	High			
Duration	Long term	Long term			
Extent	Local	Local			
Consequence	High	High			
Probability	Definite	Probable			
Significance	High High				
Status	Negative Negative				
Confidence	Medium Medium				
Degree to which impact can be reversed	Low				
Degree to which impact may cause irreplaceable loss of resources	High				
Degree to which impact can be mitigated	Low				
PROPOSED MITIGATION					
Construction activity should be restricted to the immediate footprint of the infrastructure.					

- Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species.
- Measures to control noise and dust should be applied according to current best practice in the industry.
- Maximum used should be made of existing access roads and the construction of new roads should be kept to a minimum.
- The mitigation measures proposed by the botanical specialist must be strictly enforced.
- A 100m solar panel exclusion zone must be maintained around sensitive areas i.e. rivers, pans, dams, water reservoirs and wetlands.

9.2 Operational Phase

Mortality of priori	species due to collisions with the solar panels		
CRITERIA	WITHOUT MITIGATION	WITH MITIGATION	
Intensity	Low	Low	
Duration	Long term	Long term	
Extent	Local	Local	
Consequence	Low	Low	
Probability	Possible	Possible	
Significance	Very low	Very low	
Status	Negative	Negative	
Confidence	Medium	Medium	
Degree to which impact can be reversed	Irreversible		
Degree to which impact may cause irreplaceable loss of resources	Low		
Degree to which impact can be mitigated	Low		
PROPOSED MITIGATION			
 A 100m solar papel exclusion zo 	ne must be maintained around sens	itive areas i e rivers nans dams	

• A 100m solar panel exclusion zone must be maintained around sensitive areas i.e. rivers, pans, dams, water reservoirs and wetlands.

Entrapment of birds in the perimeter fence					
CRITERIA	WITHOUT MITIGATION	WITH MITIGATION			
Intensity	Medium	Medium			
Duration	Long term	Long term			
Extent	Local	Local			
Consequence	Medium	Medium			
Probability	Probable Improbable				
Significance	Medium	Low			
Status	Negative Negative				
Confidence	Medium Medium				
Degree to which impact can be reversed	Irreversible				
Degree to which impact may cause irreplaceable loss of resources	Low				
Degree to which impact can be mitigated	Medium				
PROPOSED MITIGATION					
 Increasing the spacing between 	at least the top two wires (to a mini	mum of 30cm) and ensuring they			

Increasing the spacing between at least the top two wires (to a minimum of 30cm) and ensuring they
are correctly tensioned will reduce the snaring risk.

• If possible, a single perimeter fence should be used.

Electrocution of priority species in the onsite substations.			
CRITERIA	WITHOUT MITIGATION	WITH MITIGATION	
Intensity	Medium	Medium	
Duration	Long term	Long term	
Extent	Local	local	
Consequence	Medium	Medium	
Probability	Possible	Improbable	
Significance	Low	Low	
Status	Negative	Negative	
Confidence	High	High	
Degree to which impact can be reversed	Irreversible		
Degree to which impact may cause irreplaceable loss of resources	Low		
Degree to which impact can be mitigated	Medium		
PROPOSED MITIGATION			

Due to the complicated design of the substation hardware, pro-active mitigation is not a practical option. Instead, the situation must be monitored, and should electrocutions of priority species be recorded, reactive mitigation could be applied in the form of insulation of live components.

Mortality of priority species due to collisions with the 132kV OHL				
CRITERIA	WITHOUT MITIGATION	WITH MITIGATION		
Intensity	Medium	Medium		
Duration	Long term	Long term		
Extent	Local	Local		
Consequence	Medium	Medium		
Probability	Probable	Possible		
Significance	Medium	Low		
Status	Negative	Negative		
Confidence	High	High		
Degree to which impact can be reversed	Medium			
Degree to which impact may cause irreplaceable loss of resources	Low			
Degree to which impact can be mitigated	Medium			
PROPOSED MITIGATION				

The whole grid connection needs to be marked with Eskom approved bird flight diverters. The bird flight diverters should be installed on the full span length on the earthwire (according to Eskom guidelines - five metres apart). Light and dark colour devices must be alternated to provide contrast against both dark and light backgrounds respectively. These devices must be installed as soon as the conductors are strung.

Decommissioning Phase 9.3

Displacement of priority species due to disturbance associated with decommissioning of the PV facility and associated infrastructure.				
CRITERIA	WITHOUT MITIGATION	WITH MITIGATION		
Intensity	High	High		
Duration	Short term	Short term		
Extent	Local	Local		
Consequence	Medium	Medium		
Probability	Definite	Definite		
Significance	Medium	Medium		
Status	Negative	Negative		
Confidence	High	High		
Degree to which impact can be reversed	High			
Degree to which impact may cause irreplaceable loss of resources	Low			
Degree to which impact can be mitigated	Low			
PROPOSED MITIGATION				
Decommissioning activity should be restricted to the immediate footprint of the infrastructure.				

- Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species.
- Measures to control noise and dust should be applied according to current best practice in the industry.

A comparison between pre-and post-mitigation phases is shown in Table 4 below.

Table 4: Comparison of impacts on environmental parameters pre- and post-mitigation

Issues	Significance rating prior to mitigation	Significance rating post mitigation
Displacement of priority species due to disturbance and habitat destruction associated with construction of the PV plant and associated infrastructure.	High	High
Mortality of priority species due to collisions with solar panels	Very low	Very low
Entrapment of birds in the perimeter fence	Medium	Low
Mortality of priority species due to electrocution in the onsite substations	Low	Low
Mortality of priority species due to collisions with the 132kV OHL	Medium	Low
Displacement of priority species due to disturbance associated with decommissioning of the PV plant and associated infrastructure.	Medium	Medium
	Displacement of priority species due to disturbance and habitat destruction associated with construction of the PV plant and associated infrastructure. Mortality of priority species due to collisions with solar panels Entrapment of birds in the perimeter fence Mortality of priority species due to electrocution in the onsite substations Mortality of priority species due to collisions with the 132kV OHL Displacement of priority species due to disturbance associated with decommissioning of the PV plant and associated	to mitigationDisplacement of priority species due to disturbance and habitat destruction associated with construction of the PV plant and associated infrastructure.HighMortality of priority species due to collisions with solar panelsVery lowEntrapment of birds in the perimeter fenceMediumMortality of priority species due to electrocution in the onsite substationsLowMortality of priority species due to collisions with the 132kV OHLMediumDisplacement of priority species due to disturbance associated with decommissioning of the PV plant and associatedMedium

10 ENVIRONMENTAL MANAGEMENT PROGRAMME INPUTS

Refer to Appendix C for a description of the key mitigation and monitoring recommendations for each applicable mitigation measure identified for all phases of the project.

11 IDENTIFICATION OF A PREFERRED GRID CONNECTION ALIGNMENT AND LAY-DOWN AREA

11.1 132kV Grid connection

Two options have been put forward for assessment, namely Option 1 (maximum length 4.7km) and Option 2 (maximum length 4.42km). There is very little to choose between the two options from an avifaunal impact perspective, as they both traverse essentially the same habitat, namely woodland. However, Option 2 is the preferred option on the basis of it being the shorter of the two options. However, both options are deemed acceptable.

11.2 Lay-down areas

Three of the proposed lay-down areas are situated in agricultural fields, one is in grassland and two are in woodland. The impact (displacement due to disturbance and habitat transformation) would be less severe in the agricultural areas as far as the avifauna is concerned. All the laydown areas are deemed acceptable, but the laydown areas in agricultural habitat are preferred above those in natural habitat.

12 FINAL SPECIALIST STATEMENT AND AUTHORISATION RECOMMENDATION

12.1 Statement and Reasoned Opinion

The study area and immediate environment is classified as Low to Medium sensitivity for terrestrial animals according to the Terrestrial Animal Species Theme. The medium sensitivity classification is not linked to avifauna. The project site contains marginal habitat for species of conservation concern (SCC) as defined in the Protocol for the specialist assessment and minimum report content requirements for environmental impacts on terrestrial animal species (Government Gazette No 43855, 30 October 2020, namely listed on the IUCN Red List of Threatened Species or South Africa's National Red List website as Critically Endangered, Endangered or Vulnerable. Based on these criteria, the development area is correctly classified as Low sensitivity for avifauna. No fatal flaws were discovered during the investigations. It is therefore recommended that the activity is authorised, on condition that the proposed mitigation measures as detailed in the Impact Tables (Section 9 of the report) and the EMPr (Appendix C) are strictly implemented.

13 REFERENCES

- ALONSO, J. A. AND ALONSO, J. C. 1999 Collision of birds with overhead transmission lines in Spain. Pp. 57–82 in Ferrer, M. and Janss, G. F. E., eds. Birds and power lines: Collision, electrocution and breeding. Madrid, Spain: Quercus.Google Scholar
- ANIMAL DEMOGRAPHY UNIT. 2021. The southern African Bird Atlas Project 2. University of Cape Town. http://sabap2.adu.org.za.
- BARRIENTOS R, PONCE C, PALACIN C, MARTÍN CA, MARTÍN B, ET AL. 2012. Wire marking results in a small but significant reduction in avian mortality at power lines: A BACI Designed Study. PLoS ONE 7(3): e32569. doi:10.1371/journal.pone.0032569.
- BARRIENTOS, R., ALONSO, J.C., PONCE, C., PALACÍN, C. 2011. Meta-Analysis of the effectiveness of marked wire in reducing avian collisions with power lines. Conservation Biology 25: 893-903.

- BERNARDINO, J., BEVANGER, K., BARRIENTOS, R., DWYER, J.F. MARQUES, A.T., MARTINS, R.C., SHAW, J.M., SILVA, J.P., MOREIRA, F. 2018. Bird collisions with power lines: State of the art and priority areas for research. https://doi.org/10.1016/j.biocon.2018.02.029. Biological Conservation 222 (2018) 1 – 13.
- BIRDLIFE INTERNATIONAL (202) Country profile: South Africa. Available from http://www.birdlife.org/datazone/country/south-africa.
- COUNTY OF MERCED. 2014. Draft Environmental Impact Report for the Wright Solar Park Conditional Use Permit Application CUP12-017. Public Draft. July. (ICF 00552.13.) Merced, CA. Prepared by ICF International, Sacramento, CA.
- DEVAULT, T. L., SEAMANS, T. W., SCHMIDT, J A., BELANT, J. L., BLACKWELL, B F., MOOERS, N., TYSON, L. A., & VANPELT, L. 2014. "Bird Use of Solar Photovoltaic Installations at US Airports: Implications for Aviation Safety". USDA National Wildlife Research Center - Staff Publications. 1418.https://digitalcommons.unl.edu/icwdm_usdanwrc/1418.
- FLURI, T.P. 2009. The potential of concentrating solar power in South Africa. Energy Policy 37: 5075-5080.
- H. T. HARVEY & ASSOCIATES. 2014a. California Valley Solar Ranch Project Avian and Bat Protection Plan Sixth Quarterly Post construction Fatality Report 16 November 2013 - 15 February 2014.
- H. T. HARVEY & ASSOCIATES. 2014b. California Valley Solar Ranch Project Avian and Bat Protection Plan Sixth Quarterly Post construction Fatality Report 16 February 2014 15 May 2014.
- HARRISON, J.A., ALLAN, D.G., UNDERHILL, L.G., HERREMANS, M., TREE, A.J., PARKER, V & BROWN, C.J. (eds). 1997. The atlas of southern African birds. Vol 1 & 2. BirdLife South Africa, Johannesburg.
- HERNANDEZ, R.R., *et al.*, 2014, "Environmental Impacts of Utility-Scale Solar Energy," Renewable and Sustainable Energy Reviews 29: 766–779.
- HOCKEY P.A.R., DEAN W.R.J., AND RYAN P.G. 2005. Robert's Birds of Southern Africa, seventh edition. Trustees of the John Voelcker Bird Book Fund, Cape Town.
- JEAL. C. 2017. The impact of a 'trough' Concentrated Solar Power facility on birds and other animals in the Northern Cape, South Africa. Minor Dissertation presented in partial fulfilment of the requirements for the degree of Master of Science in Conservation Biology. University of Cape Town.
- JENKINS, A.R., RALSTON-PATTON, SMIT- ROBINSON, A.H. 2017. Guidelines for assessing and monitoring the impact of solar power generating facilities on birds in southern Africa. BirdLife South Africa.
- JENKINS, A.R., SMALLIE, J.J. & DIAMOND, M. 2010. Avian collisions with power lines: a global review of causes and mitigation with a South African perspective. Bird Conservation International 20: 263-278.
- KAGAN, R. A., T. C. VINER, P. W. TRAIL, AND E. O. ESPINOZA. 2014. Avian Mortality at Solar Energy Facilities in Southern California: A Preliminary Analysis. National Fish and Wildlife Forensics Laboratory.
- KOOPS, F.B.J. & DE JONG, J. 1982. Vermindering van draadslachtoffers door markering van hoogspanningsleidingen in de omgeving van Heerenveen. Electrotechniek 60 (12): 641 – 646.
- KOSCIUCH K, RISER-ESPINOZA D, GERRINGER M, ERICKSON W. (2020) A summary of bird mortality at photovoltaic utility scale solar facilities in the Southwestern U.S.. PLoS ONE 15(4): e0232034. https://doi.org/10.1371/journal.pone.0232034
- LOSS, S.R., WILL, T., LOSS, S.S., & MARRA, P.P. 2014. Bird-building collisions in the United States: Estimates of annual mortality and species vulnerability. The Condor 116(1):8-23. 2014.
- LOVICH, J.E. and ENNEN, J.R. 2011, Wildlife Conservation and Solar Energy Development in the Desert Southwest, United States, BioScience 61:982–992.
- MARNEWICK, M.D., RETIEF E.F., THERON N.T., WRIGHT D.R., ANDERSON T.A. 2015. Important Bird and Biodiversity Areas of South Africa. Johannesburg: Birdlife South Africa.
- MARTIN, G., SHAW, J., SMALLIE J. & DIAMOND, M. 2010. Bird's eye view How birds see is key to avoiding power line collisions. Eskom Research Report. Report Nr: RES/RR/09/31613.
- MCCRARY, M. D., R. L. MCKERNAN, R. W. SCHREIBER, W. D. WAGNER, AND T. C. SCIARROTTA. 1986. Avian mortality at a solar energy plant. J. Field Ornithology 57:135-141.

- MUCINA. L. & RUTHERFORD, M.C. (Eds) 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria.
- MUNZHEDI, R. & SEBITOSI, A.B. 2009. Re-drawing the solar map of South Africa for photovoltaic applications. Renewable Energy 34: 165-169.
- NATIONAL AUDUBON SOCIETY. 2015. Audubon's Birds and Climate Change Report: A Primer for Practitioners. National Audubon Society, New York. Contributors: Gary Langham, Justin Schuetz, Candan Soykan, Chad Wilsey, Tom Auer, Geoff LeBaron, Connie Sanchez, Trish Distler. Version 1.3.
- SEYMORE, R., INGLESI-LOTZ, R. & BLIGNAUT, J. 2014. A greenhouse gas emissions inventory for South Africa: a comparative analysis. Renewable & Sustainable Energy Reviews 34: 371-379.
- SPORER, M.K., DWYER, J.F., GERBER, B.D, HARNESS, R.E, PANDEY, A.K. 2013. Marking Power Lines to Reduce Avian Collisions Near the Audubon National Wildlife Refuge, North Dakota. Wildlife Society Bulletin 37(4):796–804; 2013; DOI: 10.1002/wsb.329.
- TAYLOR, M.R., PEACOCK F, & WANLESS R.W (EDS.) 2015. The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland. BirdLife South Africa, Johannesburg, South Africa.
- VISSER, E., PEROLD, V., RALSTON-PATON, S., CARDENAL, A.C., RYAN, P.G. 2019. Assessing the impacts of a utility-scale photovoltaic solar energy facility on birds in the Northern Cape, South Africa. https://doi.org/10.1016/j.renene.2018.08.106 Renewable Energy 133 (2019) 1285 – 1294.
- WALSTON, L.J. ROLLINS, K.E. SMITH, K.P. LAGORY, K.E. SINCLAIR, K. TURCHI, C. WENDELIN, T. & SOUDER, H. A. 2015. Review of Avian Monitoring and Mitigation Information at Existing Utility-Scale Solar Facilities. U.S. Department of Energy, SunShot Initiative and Office of Energy Efficiency & Renewable Energy. April 2015.
- WALWYN, D.R., BRENT A.C. 2015. Renewable energy gathers steam in South Africa. Renewable and Sustainable Energy 41: 390-401.
- WEST (Western EcoSystems Technology, Inc.), 2014, Sources of Avian Mortality and Risk Factors Based on Empirical Data from Three Photovoltaic Solar Facilities, prepared by Western EcoSystems Technology, Inc., June 17.
- WORMWORTH, J. & MALLON, K. 2006. Bird Species and Climate Change. WWF Australia. Sydney, NSW, Australia.

Appendices

- Appendix A: Specialist Expertise
- Appendix B: Species List
- Appendix C: Environmental Management Plan
- Appendix D: Impact Assessment Methodology
- Appendix E: Site Sensitivity Verification Report

Curriculum vitae: Chris van Rooyen

Profession/Specialisation	:	Avifaunal Specialist
Highest Qualification	:	BA LLB
Nationality	:	South African
Years of experience	:	22 years

Key Experience

Chris van Rooyen has twenty-two years' experience in the assessment of avifaunal interactions with industrial infrastructure. He was employed by the Endangered Wildlife Trust as head of the Eskom-EWT Strategic Partnership from 1996 to 2007, which has received international acclaim as a model of co-operative management between industry and natural resource conservation. He is an acknowledged global expert in this field and has consulted in South Africa, Namibia, Botswana, Lesotho, New Zealand, Texas, New Mexico and Florida. He also has extensive project management experience and he has received several management awards from Eskom for his work in the Eskom-EWT Strategic Partnership. He is the author and/or co-author of 17 conference papers, co-author of two book chapters, several research reports and the current best practice guidelines for avifaunal monitoring at wind farm sites. He has completed around 130 power line assessments; and has to date been employed as specialist avifaunal consultant on more than 50 renewable energy generation projects. He has also conducted numerous risk assessments on existing power lines infrastructure. He also works outside the electricity industry and he has done a wide range of bird impact assessment studies associated with various residential and industrial developments. He serves on the Birds and Wind Energy Specialist Group which was formed in 2011 to serve as a liaison body between the ornithological community and the wind industry.

Key Project Experience

Bird Impact Assessment Studies and avifaunal monitoring for wind-powered generation facilities:

- 1. Eskom Klipheuwel Experimental Wind Power Facility, Western Cape
- 2. Mainstream Wind Facility Jeffreys Bay, Eastern Cape (EIA and monitoring)
- 3. Biotherm, Swellendam, (Excelsior), Western Cape (EIA and monitoring)
- 4. Biotherm, Napier, (Matjieskloof), Western Cape (pre-feasibility)
- 5. Windcurrent SA, Jeffreys Bay, Eastern Cape (2 sites) (EIA and monitoring)
- 6. Caledon Wind, Caledon, Western Cape (EIA)
- 7. Innowind (4 sites), Western Cape (EIA)
- 8. Renewable Energy Systems (RES) Oyster Bay, Eastern Cape (EIA and monitoring)
- 9. Oelsner Group (Kerriefontein), Western Cape (EIA)
- 10. Oelsner Group (Langefontein), Western Cape (EIA)
- 11. InCa Energy, Vredendal Wind Energy Facility Western Cape (EIA)
- 12. Mainstream Loeriesfontein Wind Energy Facility (EIA and monitoring)
- 13. Mainstream Noupoort Wind Energy Facility (EIA and monitoring)
- 14. Biotherm Port Nolloth Wind Energy Facility (Monitoring)
- 15. Biotherm Laingsburg Wind Energy Facility (EIA and monitoring)
- 16. Langhoogte Wind Energy Facility (EIA)
- 17. Vleesbaai Wind Energy Facility (EIA and monitoring)
- 18. St. Helena Bay Wind Energy Facility (EIA and monitoring)
- 19. Electrawind, St Helena Bay Wind Energy Facility (EIA and monitoring)
- 20. Electrawind, Vredendal Wind Energy Facility (EIA)
- 21. SAGIT, Langhoogte and Wolseley Wind Energy facilities
- 22. Renosterberg Wind Energy Project 12-month preconstruction avifaunal monitoring project
- 23. De Aar North (Mulilo) Wind Energy Project 12-month preconstruction avifaunal monitoring project
- 24. De Aar South (Mulilo) Wind Energy Project 12-month bird monitoring
- 25. Namies Aggenys Wind Energy Project 12-month bird monitoring
- 26. Pofadder Wind Energy Project 12-month bird monitoring
- 27. Dwarsrug Loeriesfontein Wind Energy Project 12-month bird monitoring
- 28. Waaihoek Utrecht Wind Energy Project 12-month bird monitoring
- 29. Amathole Butterworth Utrecht Wind Energy Project 12-month bird monitoring & EIA specialist
- 30. Phezukomoya and San Kraal Wind Energy Projects 12-month bird monitoring & EIA specialist study

(Innowind)

- 31. Beaufort West Wind Energy Facility 12-month bird monitoring & EIA specialist study (Mainstream)
- 32. Leeuwdraai Wind Energy Facility 12-month bird monitoring & EIA specialist study (Mainstream)
- 33. Sutherland Wind Energy Facility 12-month bird monitoring (Mainstream)
- 34. Maralla Wind Energy Facility 12-month bird monitoring & EIA specialist study (Biotherm)
- 35. Esizayo Wind Energy Facility 12-month bird monitoring & EIA specialist study (Biotherm)
- 36. Humansdorp Wind Energy Facility 12-month bird monitoring & EIA specialist study (Cennergi)
- 37. Aletta Wind Energy Facility 12-month bird monitoring & EIA specialist study (Biotherm)
- 38. Eureka Wind Energy Facility 12-month bird monitoring & EIA specialist study (Biotherm)
- 39. Makambako Wind Energy Facility (Tanzania) 12-month bird monitoring & EIA specialist study (Windlab)
- 40. R355 Wind Energy Facility 12-month bird monitoring (Mainstream)
- 41. Groenekloof Wind Energy Facility 12-month bird monitoring & EIA specialist study (Mulilo)
- 42. Tsitsikamma Wind Energy Facility 24-months post-construction monitoring (Cennergi)
- 43. Noupoort Wind Energy Facility 24-months post-construction monitoring (Mainstream)
- 44. Kokerboom Wind Energy Facility 12-month bird monitoring & EIA specialist study (Business Venture Investments)
- 45. Kuruman Wind Energy Facility 12-month bird monitoring & EIA specialist study (Mulilo)
- 46. Dassieklip Wind Energy Facility 3 years post-construction monitoring (Biotherm)
- 47. Loeriesfontein 2 Wind Energy Facility 2 years post-construction monitoring (Mainstream)
- 48. Khobab Wind Energy Facility 2 years post-construction monitoring (Mainstream)
- 49. Excelsior Wind Energy Facility 18 months construction phase monitoring (Biotherm)
- 50. Boesmansberg Wind Energy Facility 12-months pre-construction bird monitoring (juwi)
- 51. Mañhica Wind Energy Facility, Mozambique, 12-months pre-construction monitoring (Windlab)
- 52. Kwagga Wind Energy Facility, Beaufort West, 12-months pre-construction monitoring (ABO)
- 53. Pienaarspoort Wind Energy Facility, Touws River, Western Cape, 12-months pre-construction monitoring (ABO).
- 54. Koup 1 and 2 Wind Energy Facilities, Beaufort West, Western Cape, 12 months pre-construction monitoring (Genesis Eco-energy)
- 55. Duiker Wind Energy Facility, Vredendal, Western Cape 12 months pre-construction monitoring (ABO)
- 56. Perdekraal East Wind Energy Facility, Touws River, Western Cape, 18 months construction phase monitoring (Mainstream).
- 57. Swellendam Wind Energy Facility, Western Cape, 12-month pre-construction monitoring (Veld Renewables)
- 58. Lombardskraal Wind Energy Facility, Western Cape, 12-month pre-construction monitoring (Enertrag SA)
- 59. Mainstream Roan 2 & Heuweltjies Wind Energy Facilities, Western Cape, 12-month pre-construction monitoring (Mainstream)
- 60. Great Karoo Wind Energy Facility, Northern Cape, 12-month pre-construction monitoring (African Green Ventures).
- 61. Mpumalanga & Gauteng Wind and Hybrid Energy Facilities (6x), pre-construction monitoring (Enertrag SA)
- 62. Dordrecht Wind Energy Facilities, Eastern Cape, Screening Report (Enertrag SA)
- 63. Dordrecht Wind Energy Facilities, Eastern Cape, Screening Report (ACED)
- 64. Nanibees North & South Wind Energy Facilities, Northern Cape, Screening Report (juwi)
- 65. Sutherland Wind Energy Facilities, Northern Cape, Screening Report (WKN Windcurrent)
- 66. Pofadder Wind Energy Facility, Northern Cape, Screening Report (Atlantic Energy)
- 67. Haga Wind Energy Facility, Eastern Cape, Amendment Report (WKN Windcurrent)
- 68. Banken Wind Energy Facility, Northern Cape, Screening Report (Atlantic Energy)
- 69. Hartebeest Wind Energy Facility, Western Cape, 12-month pre-construction monitoring (juwi).

Bird Impact Assessment Studies for Solar Energy Plants:

- 1. Concentrated Solar Power Plant, Upington, Northern Cape.
- 2. Globeleq De Aar and Droogfontein Solar PV Pre- and Post-construction avifaunal monitoring
- 3. JUWI Kronos PV project, Copperton, Northern Cape
- 4. Sand Draai CSP project, Groblershoop, Northern Cape
- 5. Biotherm Helena PV Project, Copperton, Northern Cape
- 6. Biotherm Letsiao CSP Project, Aggeneys, Northern Cape
- 7. Biotherm Enamandla PV Project, Aggeneys, Northern Cape
- 8. Biotherm Sendawo PV Project, Vryburg, North-West

- 9. Biotherm Tlisitseng PV Project, Lichtenburg, North-West
- 10. JUWI Hotazel Solar Park Project, Hotazel, Northern Cape
- 11. Namakwa Solar Project, Aggeneys, Northern Cape
- 12. Brypaal Solar Power Project, Kakamas, Northern Cape
- 13. ABO Vryburg 1,2,3 Solar PV Project, Vryburg, North-West
- 14. Scatec Solar Kenhardt PV 4, PV 5 and PV6 Projects, Kenhardt, Northern Cape
- 15. NamPower CSP Facility near Arandis, Namibia
- 16. Dayson Klip PV Facility near Upington, Northern Cape
- 17. Geelkop PV Facility near Upington, Northern Cape
- 18. Oya PV Facility, Ceres, Western Cape
- 19. Vrede and Rondawel PV Facilities, Free State
- 20. Veroniva Ceres PV Facilities, Western Cape
- 21. Leeudoringstad PV Facility, North-West

Bird Impact Assessment Studies for the following overhead line projects:

- 1. Chobe 33kV Distribution line
- 2. Athene Umfolozi 400kV
- 3. Beta-Delphi 400kV
- 4. Cape Strengthening Scheme 765kV
- 5. Flurian-Louis-Trichardt 132kV
- 6. Ghanzi 132kV (Botswana)
- 7. Ikaros 400kV
- 8. Matimba-Witkop 400kV
- 9. Naboomspruit 132kV
- 10. Tabor-Flurian 132kV
- 11. Windhoek Walvisbaai 220 kV (Namibia)
- 12. Witkop-Overyssel 132kV
- 13. Breyten 88kV
- 14. Adis-Phoebus 400kV
- 15. Dhuva-Janus 400kV
- 16. Perseus-Mercury 400kV
- 17. Gravelotte 132kV
- 18. Ikaros 400 kV
- 19. Khanye 132kV (Botswana)
- 20. Moropule Thamaga 220 kV (Botswana)
- 21. Parys 132kV
- 22. Simplon Everest 132kV
- 23. Tutuka-Alpha 400kV
- 24. Simplon-Der Brochen 132kV
- 25. Big Tree 132kV
- 26. Mercury-Ferrum-Garona 400kV
- 27. Zeus-Perseus 765kV
- 28. Matimba B Integration Project
- 29. Caprivi 350kV DC (Namibia)
- 30. Gerus-Mururani Gate 350kV DC (Namibia)
- 31. Mmamabula 220kV (Botswana)
- 32. Steenberg-Der Brochen 132kV
- 33. Venetia-Paradise T 132kV
- 34. Burgersfort 132kV
- 35. Majuba-Umfolozi 765kV
- 36. Delta 765kV Substation
- 37. Braamhoek 22kV
- 38. Steelpoort Merensky 400kV
- 39. Mmamabula Delta 400kV
- 40. Delta Epsilon 765kV
- 41. Gerus-Zambezi 350kV DC Interconnector: Review of proposed avian mitigation measures for the Okavango and Kwando River crossings
- 42. Giyani 22kV Distribution line

- 43. Liqhobong-Kao 132/11kV distribution power line, Lesotho
- 44. 132kV Leslie Wildebeest distribution line
- 45. A proposed new 50 kV Spoornet feeder line between Sishen and Saldanha
- 46. Cairns 132kv substation extension and associated power lines
- 47. Pimlico 132kv substation extension and associated power lines
- 48. Gyani 22kV
- 49. Matafin 132kV
- 50. Nkomazi_Fig Tree 132kV
- 51. Pebble Rock 132kV
- 52. Reddersburg 132kV
- 53. Thaba Combine 132kV
- 54. Nkomati 132kV
- 55. Louis Trichardt Musina 132kV
- 56. Endicot 44kV
- 57. Apollo Lepini 400kV
- 58. Tarlton-Spring Farms 132kV
- 59. Kuschke 132kV substation
- 60. Bendstore 66kV Substation and associated lines
- 61. Kuiseb 400kV (Namibia)
- 62. Gyani-Malamulele 132kV
- 63. Watershed 132kV
- 64. Bakone 132kV substation
- 65. Eerstegoud 132kV LILO lines
- 66. Kumba Iron Ore: SWEP Relocation of Infrastructure
- 67. Kudu Gas Power Station: Associated power lines
- 68. Steenberg Booysendal 132kV
- 69. Toulon Pumps 33kV
- 70. Thabatshipi 132kV
- 71. Witkop-Silica 132kV
- 72. Bakubung 132kV
- 73. Nelsriver 132kV
- 74. Rethabiseng 132kV
- 75. Tilburg 132kV
- 76. GaKgapane 66kV
- 77. Knobel Gilead 132kV
- 78. Bochum Knobel 132kV
- 79. Madibeng 132kV
- 80. Witbank Railway Line and associated infrastructure
- 81. Spencer NDP phase 2 (5 lines)
- 82. Akanani 132kV
- 83. Hermes-Dominion Reefs 132kV
- 84. Cape Pensinsula Strengthening Project 400kV
- 85. Magalakwena 132kV
- 86. Benficosa 132kV
- 87. Dithabaneng 132kV
- 88. Taunus Diepkloof 132kV
- 89. Taunus Doornkop 132kV
- 90. Tweedracht 132kV
- 91. Jane Furse 132kV
- 92. Majeje Sub 132kV
- 93. Tabor Louis Trichardt 132kV
- 94. Riversong 88kV
- 95. Mamatsekele 132kV
- 96. Kabokweni 132kV
- 97. MDPP 400kV Botswana
- 98. Marble Hall NDP 132kV
- 99. Bokmakiere 132kV Substation and LILO lines
- 100. Styldrift 132kV
- 101. Taunus Diepkloof 132kV
- 102. Bighorn NDP 132kV

- 103. Waterkloof 88kV
- 104. Camden Theta 765kV
- 105. Dhuva Minerva 400kV Diversion
- 106. Lesedi Grootpan 132kV
- 107. Waterberg NDP
- 108. Bulgerivier Dorset 132kV
- 109. Bulgerivier Toulon 132kV
- 110. Nokeng-Fluorspar 132kV
- 111. Mantsole 132kV
- 112. Tshilamba 132kV
- 113. Thabamoopo Tshebela Nhlovuko 132kV
- 114. Arthurseat 132kV
- 115. Borutho 132kV MTS
- 116. Volspruit Potgietersrus 132kV
- 117. Neotel Optic Fibre Cable Installation Project: Western Cape
- 118. Matla-Glockner 400kV
- 119. Delmas North 44kV
- 120. Houwhoek 11kV Refurbishment
- 121. Clau-Clau 132kV
- 122. Ngwedi-Silwerkrans 134kV
- 123. Nieuwehoop 400kV walk-through
- 124. Booysendal 132kV Switching Station
- 125. Tarlton 132kV
- 126. Medupi Witkop 400kV walk-through
- 127. Germiston Industries Substation
- 128. Sekgame 132kV
- 129. Botswana South Africa 400kV Transfrontier Interconnector
- 130. Syferkuil Rampheri 132kV
- 131. Queens Substation and associated 132kV powerlines
- 132. Oranjemond 400kV Transmission line
- 133. Aries Helios Juno walk-down
- 134. Kuruman Phase 1 and 2 Wind Energy facilities 132kV Grid connection
- 135. Transnet Thaba 132kV

Bird Impact Assessment Studies for the following residential and industrial developments:

- 1. Lizard Point Golf Estate
- 2. Lever Creek Estates
- 3. Leloko Lifestyle Estates
- 4. Vaaloewers Residential Development
- 5. Clearwater Estates Grass Owl Impact Study
- 6. Somerset Ext. Grass Owl Study
- 7. Proposed Three Diamonds Trading Mining Project (Portion 9 and 15 of the Farm Blesbokfontein)
- 8. N17 Section: Springs to Leandra "Borrow Pit 12 And Access Road On (Section 9, 6 And 28 Of the Farm Winterhoek 314 Ir)
- 9. South African Police Services Gauteng Radio Communication System: Portion 136 Of the Farm 528 Jq, Lindley.
- 10. Report for the proposed upgrade and extension of the Zeekoegat Wastewater Treatment Works, Gauteng.
- 11. Bird Impact Assessment for Portion 265 (a portion of Portion 163) of the farm Rietfontein 189-JR, Gauteng.
- 12. Bird Impact Assessment Study for Portions 54 and 55 of the Farm Zwartkop 525 JQ, Gauteng.
- 13. Bird Impact Assessment Study Portions 8 and 36 of the Farm Nooitgedacht 534 JQ, Gauteng.
- 14. Shumba's Rest Bird Impact Assessment Study
- 15. Randfontein Golf Estate Bird Impact Assessment Study
- 16. Zilkaatsnek Wildlife Estate
- 17. Regenstein Communications Tower (Namibia)
- 18. Avifaunal Input into Richards Bay Comparative Risk Assessment Study
- 19. Maquasa West Open Cast Coal Mine

- 20. Glen Erasmia Residential Development, Kempton Park, Gauteng
- 21. Bird Impact Assessment Study, Weltevreden Mine, Mpumalanga
- 22. Bird Impact Assessment Study, Olifantsvlei Cemetery, Johannesburg
- 23. Camden Ash Disposal Facility, Mpumalanga
- 24. Lindley Estate, Lanseria, Gauteng
- 25. Proposed open cast iron ore mine on the farm Lylyveld 545, Northern Cape
- 26. Avifaunal monitoring for the Sishen Mine in the Northern Cape as part of the EMPr requirements
- 27. Steelpoort CNC Bird Impact Assessment Study

Professional affiliations

I work under the supervision of and in association with Albert Froneman (MSc Conservation Biology) (SACNASP Zoological Science Registration number 400177/09) as stipulated by the Natural Scientific Professions Act 27 of 2003.

Curriculum vitae: Albert Froneman

Profession/Specialisation	:	Avifaunal Specialist
Highest Qualification	:	MSc (Conservation Biology)
Nationality	:	South African
Years of experience	:	20 years

Key Qualifications

Albert Froneman (Pr.Sci.Nat) has more than 18 years' experience in the management of avifaunal interactions with industrial infrastructure. He holds a M.Sc. degree in Conservation Biology from the University of Cape Town. He managed the Airports Company South Africa (ACSA) – Endangered Wildlife Trust Strategic Partnership from 1999 to 2008 which has been internationally recognized for its achievements in addressing airport wildlife hazards in an environmentally sensitive manner at ACSA's airports across South Africa. Albert is recognized worldwide as an expert in the field of bird hazard management on airports and has worked in South Africa, Swaziland, Botswana, Namibia, Kenya, Israel, and the USA. He has served as the vice chairman of the International Bird Strike Committee and has presented various papers at international conferences and workshops. At present he is consulting to ACSA with wildlife hazard management on all their airports. He also an accomplished specialist ornithological consultant outside the aviation industry and has completed a wide range of bird impact assessment studies. He has co-authored many avifaunal specialist studies and pre-construction monitoring reports for proposed renewable energy developments across South Africa. He also has vast experience in using Geographic Information Systems to analyse and interpret avifaunal data spatially and derive meaningful conclusions. Since 2009 Albert has been a registered Professional Natural Scientist (reg. nr 400177/09) with The South African Council for Natural Scientific Professions, specialising in Zoological Science.

Key Project Experience

Renewable Energy Facilities –avifaunal monitoring projects in association with Chris van Rooyen Consulting

- 1. Jeffrey's Bay Wind Farm 12-months preconstruction avifaunal monitoring project
- 2. Oysterbay Wind Energy Project 12-months preconstruction avifaunal monitoring project
- 3. Ubuntu Wind Energy Project near Jeffrey's Bay 12-months preconstruction avifaunal monitoring project
- 4. Bana-ba-Pifu Wind Energy Project near Humansdorp 12-months preconstruction avifaunal monitoring project
- 5. Excelsior Wind Energy Project near Caledon 12-months preconstruction avifaunal monitoring project
- 6. Laingsburg Spitskopvlakte Wind Energy Project 12-months preconstruction avifaunal monitoring project
- 7. Loeriesfontein Wind Energy Project Phase 1, 2 & 3 12-months preconstruction avifaunal monitoring project
- 8. Noupoort Wind Energy Project 12-months preconstruction avifaunal monitoring project
- 9. Vleesbaai Wind Energy Project 12-months preconstruction avifaunal monitoring project
- 10. Port Nolloth Wind Energy Project 12-months preconstruction avifaunal monitoring project
- 11. Langhoogte Caledon Wind Energy Project 12-months preconstruction avifaunal monitoring project
- 12. Lunsklip Stilbaai Wind Energy Project 12-months preconstruction avifaunal monitoring project
- 13. Indwe Wind Energy Project 12-months preconstruction avifaunal monitoring project
- 14. Zeeland St Helena bay Wind Energy Project 12-months preconstruction avifaunal monitoring project
- 15. Wolseley Wind Energy Project 12-months preconstruction avifaunal monitoring project
- 16. Renosterberg Wind Energy Project 12-months preconstruction avifaunal monitoring project
- 17. De Aar North (Mulilo) Wind Energy Project 12-months preconstruction avifaunal monitoring project (2014)
- 18. De Aar South (Mulilo) Wind Energy Project 12-months bird monitoring
- 19. Namies Aggenys Wind Energy Project 12-months bird monitoring
- 20. Pofadder Wind Energy Project 12-months bird monitoring
- 21. Dwarsrug Loeriesfontein Wind Energy Project 12-months bird monitoring
- 22. Waaihoek Utrecht Wind Energy Project 12-months bird monitoring
- 23. Amathole Butterworth Utrecht Wind Energy Project 12-months bird monitoring & EIA specialist study
- 24. De Aar and Droogfontein Solar PV Pre- and Post-construction avifaunal monitoring
- 25. Makambako Wind Energy Facility (Tanzania) 12-month bird monitoring & EIA specialist study (Windlab)
- 26. R355 Wind Energy Facility 12-month bird monitoring (Mainstream)
- 27. Groenekloof Wind Energy Facility 12-month bird monitoring & EIA specialist study (Mulilo)
- 28. Tsitsikamma Wind Energy Facility 24-months post-construction monitoring (Cennergi)
- 29. Noupoort Wind Energy Facility 24-months post-construction monitoring (Mainstream)
- 30. Kokerboom Wind Energy Facility 12-month bird monitoring & EIA specialist study (Business Venture

Investments)

- 31. Kuruman Wind Energy Facility 12-month bird monitoring & EIA specialist study (Mulilo)
- 32. Mañhica Wind Energy Facility 12-month bird monitoring & EIA specialist study (Windlab)
- 33. Kwagga Wind Energy Facility, Beaufort West, 12-months pre-construction monitoring (ABO)
- Pienaarspoort Wind Energy Facility, Touws River, Western Cape, 12-months pre-construction monitoring (ABO). Koup 1 and 2 Wind Energy Facilities, Beaufort West, Western Cape, 12 months pre-construction monitoring (Genesis Eco-energy)
- 35. Duiker Wind Energy Facility, Vredendal, Western Cape 12 months pre-construction monitoring (ABO)
- 36. Perdekraal East Wind Energy Facility, Touws River, Western Cape, 18 months construction phase monitoring (Mainstream).
- 37. Swellendam Wind Energy Facility, Western Cape, 12-month pre-construction monitoring (Veld Renewables)
- 38. Lombardskraal Wind Energy Facility, Western Cape, 12-month pre-construction monitoring (Enertrag SA)
- 39. Mainstream Roan 2 & Heuweltjies Wind Energy Facilities, Western Cape, 12-month pre-construction monitoring (Mainstream)
- 40. Great Karoo Wind Energy Facility, Northern Cape, 12-month pre-construction monitoring (African Green Ventures).
- 41. Mpumalanga & Gauteng Wind and Hybrid Energy Facilities (6x), pre-construction monitoring (Enertrag SA)
- 42. Dordrecht Wind Energy Facilities, Eastern Cape, Screening Report (Enertrag SA)
- 43. Dordrecht Wind Energy Facilities, Eastern Cape, Screening Report (ACED)
- 44. Nanibees North & South Wind Energy Facilities, Northern Cape, Screening Report (juwi)
- 45. Sutherland Wind Energy Facilities, Northern Cape, Screening Report (WKN Windcurrent)
- 46. Pofadder Wind Energy Facility, Northern Cape, Screening Report (Atlantic Energy)
- 47. Haga Haga Wind Energy Facility, Eastern Cape, Amendment Report (WKN Windcurrent)
- 48. Banken Wind Energy Facility, Northern Cape, Screening Report (Atlantic Energy)
- 49. Hartebeest Wind Energy Facility, Western Cape, 12-month pre-construction monitoring (juwi).

Bird Impact Assessment studies and / or GIS analysis:

- 1. Aviation Bird Hazard Assessment Study for the proposed Madiba Bay Leisure Park adjacent to Port Elizabeth Airport.
- 2. Extension of Runway and Provision of Parallel Taxiway at Sir Seretse Khama Airport, Botswana Bird / Wildlife Hazard Management Specialist Study
- 3. Maun Airport Improvements Bird / Wildlife Hazard Management Specialist Study
- 4. Bird Impact Assessment Study Bird Helicopter Interaction The Bitou River, Western Cape Province South Africa
- 5. Proposed La Mercy Airport Bird Aircraft interaction specialists study using bird detection radar to assess swallow flocking behaviour
- 6. KwaZulu Natal Power Line Vulture Mitigation Project GIS analysis
- 7. Perseus-Zeus Powerline EIA GIS Analysis
- 8. Southern Region Pro-active GIS Blue Crane Collision Project.
- 9. Specialist advisor ~ Implementation of a bird detection radar system and development of an airport wildlife hazard management and operational environmental management plan for the King Shaka International Airport
- 10. Matsapha International Airport bird hazard assessment study with management recommendations
- 11. Evaluation of aviation bird strike risk at candidate solid waste disposal sites in the Ekurhuleni Metropolitan Municipality
- 12. Gateway Airport Authority Limited Gateway International Airport, Polokwane: Bird hazard assessment; Compile a bird hazard management plan for the airport
- 13. Bird Specialist Study Evaluation of aviation bird strike risk at the Mwakirunge Landfill site near Mombasa Kenya
- 14. Bird Impact Assessment Study Proposed Weltevreden Open Cast Coal Mine Belfast, Mpumalanga
- 15. Avian biodiversity assessment for the Mafube Colliery Coal mine near Middelburg Mpumalanga
- 16. Avifaunal Specialist Study SRVM Volspruit Mining project Mokopane Limpopo Province
- 17. Avifaunal Impact Assessment Study (with specific reference to African Grass Owls and other Red List species) Stone Rivers Arch
- 18. Airport bird and wildlife hazard management plan and training to Swaziland Civil Aviation Authority (SWACAA) for Matsapha and Sikhupe International Airports
- 19. Avifaunal Impact Scoping & EIA Study Renosterberg Wind Farm and Solar PV site
- 20. Bird Impact Assessment Study Proposed 60 year Ash Disposal Facility near to the Kusile Power Station

- 21. Avifaunal pre-feasibility assessment for the proposed Montrose dam, Mpumalanga
- 22. Bird Impact Assessment Study Proposed ESKOM Phantom Substation near Knysna, Western Cape
- 23. Habitat sensitivity map for Denham's Bustard, Blue Crane and White-bellied Korhaan in the Kouga Municipal area of the Eastern Cape Province
- 24. Swaziland Civil Aviation Authority Sikhuphe International Airport Bird hazard management assessment
- 25. Avifaunal monitoring extension of Specialist Study SRVM Volspruit Mining project Mokopane Limpopo Province
- 26. Avifaunal Specialist Study Rooikat Hydro Electric Dam Hope Town, Northern Cape
- 27. The Stewards Pan Reclamation Project Bird Impact Assessment study
- 28. Airports Company South Africa Avifaunal Specialist Consultant Airport Bird and Wildlife Hazard Mitigation

Geographic Information System analysis & maps

- 1. ESKOM Power line Makgalakwena EIA GIS specialist & map production
- 2. ESKOM Power line Benficosa EIA GIS specialist & map production
- 3. ESKOM Power line Riversong EIA GIS specialist & map production
- 4. ESKOM Power line Waterberg NDP EIA GIS specialist & map production
- 5. ESKOM Power line Bulge Toulon EIA GIS specialist & map production
- 6. ESKOM Power line Bulge DORSET EIA GIS specialist & map production
- 7. ESKOM Power lines Marblehall EIA GIS specialist & map production
- 8. ESKOM Power line Grootpan Lesedi EIA GIS specialist & map production
- 9. ESKOM Power line Tanga EIA GIS specialist & map production
- 10. ESKOM Power line Bokmakierie EIA GIS specialist & map production
- 11. ESKOM Power line Rietfontein EIA GIS specialist & map production
- 12. Power line Anglo Coal EIA GIS specialist & map production
- 13. ESKOM Power line Camcoll Jericho EIA GIS specialist & map production
- 14. Hartbeespoort Residential Development GIS specialist & map production
- 15. ESKOM Power line Mantsole EIA GIS specialist & map production
- 16. ESKOM Power line Nokeng Flourspar EIA GIS specialist & map production
- 17. ESKOM Power line Greenview EIA GIS specialist & map production
- 18. Derdepoort Residential Development GIS specialist & map production
- 19. ESKOM Power line Boynton EIA GIS specialist & map production
- 20. ESKOM Power line United EIA GIS specialist & map production
- 21. ESKOM Power line Gutshwa & Malelane EIA GIS specialist & map production
- 22. ESKOM Power line Origstad EIA GIS specialist & map production
- 23. Zilkaatsnek Development Public Participation map production
- 24. Belfast Paarde Power line GIS specialist & map production
- 25. Solar Park Solar Park Integration Project Bird Impact Assessment Study avifaunal GIS analysis.
- 26. Kappa-Omega-Aurora 765kV Bird Impact Assessment Report Avifaunal GIS analysis.
- 27. Gamma Kappa 2nd 765kV Bird Impact Assessment Report Avifaunal GIS analysis.
- 28. ESKOM Power line Kudu-Dorstfontein Amendment EIA GIS specialist & map production.
- 29. Proposed Heilbron filling station EIA GIS specialist & map production
- 30. ESKOM Lebatlhane EIA GIS specialist & map production
- 31. ESKOM Pienaars River CNC EIA GIS specialist & map production
- 32. ESKOM Lemara Phiring Ohrigstad EIA GIS specialist & map production
- 33. ESKOM Pelly-Warmbad EIA GIS specialist & map production
- 34. ESKOM Rosco-Bracken EIA GIS specialist & map production
- 35. ESKOM Ermelo-Uitkoms EIA GIS specialist & map production
- 36. ESKOM Wisani bridge EIA GIS specialist & map production
- 37. City of Tswane New bulkfeeder pipeline projects x3 Map production
- 38. ESKOM Lebohang Substation and 132kV Distribution Power Line Project Amendment GIS specialist & map production
- 39. ESKOM Geluk Rural Powerline GIS & Mapping
- 40. Eskom Kimberley Strengthening Phase 4 Project GIS & Mapping
- 41. ESKOM Kwaggafontein Amandla Amendment Project GIS & Mapping
- 42. ESKOM Lephalale CNC GIS Specialist & Mapping
- 43. ESKOM Marken CNC GIS Specialist & Mapping
- 44. ESKOM Lethabong substation and powerlines GIS Specialist & Mapping
- 45. ESKOM Magopela- Pitsong 132kV line and new substation GIS Specialist & Mapping

Professional affiliations

South African Council for Natural Scientific Professions (SACNASP) registered Professional Natural Scientist (reg. nr 400177/09) – specialist field: Zoological Science. Registered since 2009.

Species name	Scientific name	Full protocol reporting rate %	Ad hoc protocol reporting rate %	IUCN Red Data status	SA Red Data status
Species name Abdim's Stork	Ciconia abdimii	1.74	0.00	LC	NT
Acacia Pied Barbet	Tricholaema leucomelas	89.53	2.22	LC	
African Black Duck	Anas sparsa	6.40	0.00	LC	-
African Cuckoo	Cuculus gularis	0.00	2.22	LC	_
African Darter	Anhinga rufa	6.40	0.00	LC	_
African Fish Eagle	Haliaeetus vocifer	4.65	0.00	LC	-
African Hoopoe	Upupa africana	37.21	0.00	LC	-
African Jacana	Actophilornis africanus	0.58	0.00	LC	
African Palm Swift		35.47	2.22	LC	-
	Cypsiurus parvus			LC	-
African Paradise Flycatcher	Terpsiphone viridis	12.21	0.00	LC	-
African Pipit	Anthus cinnamomeus	50.58	8.89	LC	-
African Rail	Rallus caerulescens	2.33	0.00	LC	-
African Red-eyed Bulbul	Pycnonotus nigricans	94.77	6.67	LC	-
African Reed Warbler	Acrocephalus baeticatus	5.23	0.00	LC	-
African Sacred Ibis	Threskiornis aethiopicus	19.77	6.67		-
African Snipe	Gallinago nigripennis	5.23	0.00	LC LC	-
African Spoonbill	Platalea alba	15.70	0.00		-
African Stonechat	Saxicola torquatus	49.42	2.22	LC	-
African Swamphen	Porphyrio madagascariensis	1.74	0.00	LC	-
African Wattled Lapwing	Vanellus senegallus	2.91	0.00	LC	-
Amethyst Sunbird	Chalcomitra amethystina	2.91	0.00	LC	-
Amur Falcon	Falco amurensis	8.72	0.00	LC	-
Ant-eating Chat	Myrmecocichla formicivora	25.58	0.00	LC	-
Ashy Tit	Melaniparus cinerascens	22.67	0.00	LC	-
Banded Martin	Riparia cincta	2.33	0.00	LC	-
Barn Swallow	Hirundo rustica	31.40	0.00	LC	-
Barred Wren-Warbler	Calamonastes fasciolatus	4.07	0.00	LC	-
Bar-throated Apalis	Apalis thoracica	4.65	0.00	LC	-
Black Crake	Zapornia flavirostra	4.07	0.00	LC	-
Black Heron	Egretta ardesiaca	0.58	0.00	LC	-
Black-chested Prinia	Prinia flavicans	93.60	8.89	LC	-
Black-chested Snake Eagle	Circaetus pectoralis	1.74	0.00	LC	-
Black-collared Barbet	Lybius torquatus	47.09	0.00	LC	-
Black-crowned Night Heron	Nycticorax nycticorax	1.74	0.00	LC	-
Black-faced Waxbill	Brunhilda erythronotos	7.56	0.00	LC	-
Black-headed Heron	Ardea melanocephala	23.84	4.44	LC	-
Blacksmith Lapwing	Vanellus armatus	88.37	15.56	LC	-
Black-throated Canary	Crithagra atrogularis	86.05	6.67	LC	-
Black-winged Kite	Elanus caeruleus	36.63	8.89	LC	-
Black-winged Stilt	Himantopus himantopus	42.44	2.22	LC	-
Blue Waxbill	Uraeginthus angolensis	43.02	2.22	LC	-

Succion nome	Scientifie nome	Full protocol reporting rate %	Ad hoc protocol reporting rate %	IUCN Red Data status	SA Red Data status
Species name Blue-billed Teal	Scientific name Spatula hottentota	0.58	0.00	LC	
Bokmakierie	Telophorus zeylonus	40.70	2.22	LC	-
Booted Eagle		1.16	0.00	LC	-
Brown-backed Honeybird	Hieraaetus pennatus Prodotiscus regulus	0.58	0.00	LC	-
		48.84	0.00	LC	-
Brown-crowned Tchagra	Tchagra australis Halcyon albiventris	40.04		LC	-
Brown-hooded Kingfisher Brown-throated Martin		22.09	0.00	LC	-
	Riparia paludicola	27.91		LC	-
Brubru Buffu Dinit	Nilaus afer		0.00	LC	-
Buffy Pipit	Anthus vaalensis	8.72	0.00	LC	-
Burchell's Coucal	Centropus burchellii	6.40	0.00	LC	-
Cape Bunting	Emberiza capensis	0.58	0.00	LC	-
Cape Longclaw	Macronyx capensis	54.07	6.67	LC	-
Cape Penduline Tit	Anthoscopus minutus	1.16	0.00	LC	-
Cape Robin-Chat	Cossypha caffra	70.35	2.22	LC	-
Cape Shoveler	Spatula smithii	29.65	4.44		-
Cape Sparrow	Passer melanurus	52.33	11.11	LC	-
Cape Starling	Lamprotornis nitens	59.88	6.67	LC	-
Cape Teal	Anas capensis	13.95	0.00	LC	-
Cape Turtle Dove	Streptopelia capicola	19.19	0.00	LC	-
Cape Wagtail	Motacilla capensis	65.12	4.44	LC	-
Cape White-eye	Zosterops virens	5.81	0.00	LC	-
Capped Wheatear	Oenanthe pileata	7.56	0.00	LC	-
Cardinal Woodpecker	Dendropicos fuscescens	13.95	0.00	LC	-
Chestnut-backed Sparrow- Lark	Eremopterix leucotis	3.49	0.00	LC	-
Chestnut-vented Warbler	Curruca subcoerulea	91.86	6.67	LC	-
Chinspot Batis	Batis molitor	5.23	0.00	LC	-
Cinnamon-breasted Bunting	Emberiza tahapisi	33.72	0.00	LC	-
Cloud Cisticola	Cisticola textrix	11.63	0.00	LC	-
Common Buzzard	Buteo buteo	5.23	2.22	LC	-
Common Greenshank	Tringa nebularia	15.70	4.44	LC	-
Common Moorhen	Gallinula chloropus	20.93	0.00	LC	-
Common Myna	Acridotheres tristis	71.51	8.89	LC	-
Common Ostrich	Struthio camelus	13.37	4.44	LC	-
Common Quail	Coturnix coturnix	1.74	0.00	LC	-
Common Ringed Plover	Charadrius hiaticula	1.74	0.00	LC	-
Common Sandpiper	Actitis hypoleucos	5.81	2.22	LC	-
Common Scimitarbill	Rhinopomastus cyanomelas	39.53	0.00	LC	-
Common Waxbill	Estrilda astrild	9.88	0.00	LC	-
Common Whitethroat	Curruca communis	8.72	0.00	LC	-
Coqui Francolin	Peliperdix coqui	0.58	0.00	LC	-
Crested Barbet	Trachyphonus vaillantii	79.07	8.89	LC	-
Crimson-breasted Shrike	Laniarius atrococcineus	28.49	0.00	LC	-
Crowned Lapwing	Vanellus coronatus	75.00	6.67	LC	

Species name	Scientific name	Full protocol reporting rate %	Ad hoc protocol reporting rate %	IUCN Red Data status	SA Red Data status
Curlew Sandpiper	Calidris ferruginea	7.56	0.00	NT	LC
Dark-capped Bulbul	Pycnonotus tricolor	0.00	2.22	LC	-
Desert Cisticola	Cisticola aridulus	44.19	0.00	LC	_
Diederik Cuckoo	Chrysococcyx caprius	40.12	2.22	LC	_
Domestic Goose	Anser anser domesticus	33.14	0.00	LC	_
Dusky Indigobird	Vidua funerea	0.58	0.00	LC	-
Eastern Clapper Lark	Mirafra fasciolata	13.95	0.00	LC	_
Egyptian Goose	Alopochen aegyptiaca	76.16	13.33	LC	-
European Bee-eater	Merops apiaster	32.56	2.22	LC	-
European Honey-buzzard	Pernis apivorus	0.58	0.00	LC	-
European Roller	Coracias garrulus	1.74	0.00	LC	NT
Fairy Flycatcher	Stenostira scita	1.74	0.00	LC	-
Familiar Chat	Oenanthe familiaris	13.37	2.22	LC	-
Fiery-necked Nightjar	Caprimulgus pectoralis	0.58	0.00	LC	-
Fiscal Flycatcher	Melaenornis silens	63.95	4.44	LC	-
Fulvous Whistling Duck	Dendrocygna bicolor	1.16	0.00	LC	-
Gabar Goshawk	Micronisus gabar	3.49	0.00	LC	-
Garden Warbler	Sylvia borin	2.91	0.00	LC	-
Glossy Ibis	Plegadis falcinellus	27.33	8.89	LC	-
Golden-tailed Woodpecker	Campethera abingoni	4.65	0.00	LC	-
Goliath Heron	Ardea goliath	5.81	0.00	LC	-
Great Crested Grebe	Podiceps cristatus	5.81	0.00	LC	-
Great Egret	Ardea alba	2.33	0.00	LC	-
Great Reed Warbler	Acrocephalus arundinaceus	1.74	0.00	LC	-
Great Spotted Cuckoo	Clamator glandarius	1.16	0.00	LC	-
Greater Flamingo	Phoenicopterus roseus	8.72	2.22	LC	NT
Greater Honeyguide	Indicator indicator	1.16	2.22	LC	-
Greater Kestrel	Falco rupicoloides	2.33	0.00	LC	-
Greater Striped Swallow	Cecropis cucullata	43.02	6.67	LC	-
Green Wood Hoopoe	Phoeniculus purpureus	14.53	0.00	LC	-
Green-winged Pytilia	Pytilia melba	31.98	2.22	LC	-
Grey Go-away-bird	Crinifer concolor	1.74	0.00	LC	-
Grey Heron	Ardea cinerea	29.65	11.11	LC	-
Grey Plover	Pluvialis squatarola	2.91	0.00	LC	-
Grey-backed Sparrow-Lark	Eremopterix verticalis	0.58	0.00	LC	-
	Chroicocephalus			LC	
Grey-headed Gull	cirrocephalus	18.02	6.67		-
Groundscraper Thrush	Turdus litsitsirupa	3.49	0.00	LC	-
Hadada Ibis	Bostrychia hagedash	77.91	6.67	LC	-
Hamerkop	Scopus umbretta	5.23	0.00	LC	-
Helmeted Guineafowl	Numida meleagris	69.19	8.89	LC	-
House Sparrow	Passer domesticus	36.63	6.67	LC	-
Icterine Warbler	Hippolais icterina	2.91	0.00	LC	-
Indian Peafowl	Pavo cristatus	21.51	2.22	LC	-

		Full protocol reporting rate %	Ad hoc protocol reporting rate %	IUCN Red Data status	SA Red Data status
Species name	Scientific name			1.0	
Intermediate Egret	Ardea intermedia	4.07	0.00	LC	-
Jackal Buzzard	Buteo rufofuscus	0.58	2.22	LC	-
Jacobin Cuckoo	Clamator jacobinus	4.65	0.00	LC	-
Jameson's Firefinch	Lagonosticta rhodopareia	13.95	0.00	LC	-
Kalahari Scrub Robin	Cercotrichas paena	77.91	6.67	LC	-
Karoo Thrush	Turdus smithi	30.23	6.67	LC	-
Kittlitz's Plover	Charadrius pecuarius	26.16	0.00	LC	-
Klaas's Cuckoo	Chrysococcyx klaas	1.16	0.00	LC	-
Lanner Falcon	Falco biarmicus	0.58	0.00	LC	VU
Lark-like Bunting	Emberiza impetuani	0.58	0.00	LC	-
Laughing Dove	Spilopelia senegalensis	91.86	22.22	LC	-
Lesser Flamingo	Phoeniconaias minor	4.07	4.44	NT	NT
Lesser Grey Shrike	Lanius minor	5.81	0.00	LC	-
Lesser Honeyguide	Indicator minor	1.74	0.00	LC	-
Lesser Kestrel	Falco naumanni	7.56	2.22	LC	-
Lesser Moorhen	Paragallinula angulata	0.58	0.00	LC	-
Lesser Swamp Warbler	Acrocephalus gracilirostris	13.37	0.00	LC	-
Levaillant's Cisticola	Cisticola tinniens	59.88	11.11	LC	-
Lilac-breasted Roller	Coracias caudatus	3.49	0.00	LC	-
Little Bee-eater	Merops pusillus	11.63	2.22	LC	-
Little Egret	Egretta garzetta	8.14	6.67	LC	-
Little Grebe	Tachybaptus ruficollis	43.60	4.44	LC	-
Little Rush Warbler	Bradypterus baboecala	3.49	0.00	LC	-
Little Stint	Calidris minuta	24.42	2.22	LC	-
Little Swift	Apus affinis	35.47	6.67	LC	-
Long-billed Crombec	Sylvietta rufescens	11.05	0.00	LC	-
Long-tailed Paradise Whydah	Vidua paradisaea	33.14	2.22	LC	-
Long-tailed Widowbird	Euplectes progne	34.88	0.00	LC	-
Maccoa Duck	Oxyura maccoa	0.00	4.44	VU	NT
Malachite Kingfisher	Corythornis cristatus	4.65	0.00	LC	-
Marico Flycatcher	Melaenornis mariquensis	0.00	2.22	LC	-
Marsh Owl	Asio capensis	4.65	0.00	LC	-
Marsh Sandpiper	Tringa stagnatilis	15.70	4.44	LC	-
Marsh Warbler	Acrocephalus palustris	6.98	0.00	LC	-
Martial Eagle	Polemaetus bellicosus	0.00	0.00	LC	EN
Melodious Lark	Mirafra cheniana	0.58	0.00	LC	-
Namaqua Dove	Oena capensis	43.60	8.89	LC	-
Namaqua Sandgrouse	Pterocles namaqua	0.58	0.00	LC	-
Natal Spurfowl	Pternistis natalensis	2.33	0.00	LC	_
Neddicky	Cisticola fulvicapilla	65.70	4.44	LC	_
Nicholson's Pipit	Anthus nicholsoni	1.74	0.00	LC	-
Northern Black Korhaan	Afrotis afraoides	66.28	13.33	LC	
		1 00.20	10.00		1 -

Species nome	Scientific name	Full protocol reporting rate %	Ad hoc protocol reporting rate %	IUCN Red Data status	SA Red Data status
Species name Orange River White-eye	Zosterops pallidus	71.51	0.00	LC	_
Pale Chanting Goshawk	Melierax canorus	1.74	0.00	LC	-
Pearl-spotted Owlet	Glaucidium perlatum	0.58	0.00	LC	-
Pied Avocet	Recurvirostra avosetta	4.65	0.00	LC	-
Pied Crow	Corvus albus	48.84	17.78	LC	-
				LC	-
Pied Kingfisher	Ceryle rudis	1.74	0.00	LC	-
Pied Starling	Lamprotornis bicolor	34.88	4.44	LC	-
Pink-billed Lark	Spizocorys conirostris	1.74	0.00		-
Pin-tailed Whydah	Vidua macroura	38.37	2.22	LC LC	-
Plain-backed Pipit	Anthus leucophrys	1.16	2.22		-
Pririt Batis	Batis pririt	45.93	0.00	LC	-
Purple Heron	Ardea purpurea	5.81	0.00	LC	-
Purple Indigobird	Vidua purpurascens	5.23	0.00	LC	-
Purple Roller	Coracias naevius	0.58	0.00	LC	-
Quailfinch	Ortygospiza atricollis	62.21	0.00	LC	-
Rattling Cisticola	Cisticola chiniana	41.28	2.22	LC	-
Red-backed Shrike	Lanius collurio	16.86	0.00	LC	-
Red-billed Firefinch	Lagonosticta senegala	13.95	0.00	LC	-
Red-billed Quelea	Quelea quelea	48.84	6.67	LC	-
Red-billed Teal	Anas erythrorhyncha	45.93	8.89	LC	-
Red-breasted Swallow	Cecropis semirufa	9.88	0.00	LC	-
Red-capped Lark	Calandrella cinerea	12.21	4.44	LC	-
Red-chested Cuckoo	Cuculus solitarius	2.33	0.00	LC	-
Red-chested Flufftail	Sarothrura rufa	1.74	0.00	LC	-
Red-collared Widowbird	Euplectes ardens	6.98	0.00	LC	-
Red-crested Korhaan	Lophotis ruficrista	1.74	0.00	LC	-
Red-eyed Dove	Streptopelia semitorquata	68.02	2.22	LC	-
Red-faced Mousebird	Urocolius indicus	90.12	2.22	LC	-
Red-headed Finch	Amadina erythrocephala	15.12	4.44	LC	-
Red-knobbed Coot	Fulica cristata	75.00	13.33	LC	-
Red-throated Wryneck	Jynx ruficollis	0.58	0.00	LC	-
Reed Cormorant	Microcarbo africanus	32.56	6.67	LC	-
Rock Dove	Columba livia	22.67	0.00	LC	-
Rock Kestrel	Falco rupicolus	0.58	4.44	LC	-
Ruff	Calidris pugnax	23.26	0.00	LC	-
Rufous-cheeked Nightjar	Caprimulgus rufigena	5.81	0.00	LC	-
Rufous-eared Warbler	Malcorus pectoralis	0.58	0.00	LC	-
Rufous-naped Lark	Mirafra africana	50.58	0.00	LC	-
Sabota Lark	Calendulauda sabota	20.93	2.22	LC	-
Sand Martin	Riparia riparia	1.16	0.00	LC	_
Scaly-feathered Weaver	Sporopipes squamifrons	31.98	0.00	LC	_
Secretarybird	Sagittarius serpentarius	0.58	2.22	EN	EN
	Sugnarius sciperiarius	12.79	2.22	LC	

		Full protocol reporting rate %	Ad hoc protocol reporting rate %	IUCN Red Data status	SA Red Data status
Species name	Scientific name				
South African Cliff Swallow	Petrochelidon spilodera	48.26	11.11	LC	-
South African Shelduck	Tadorna cana	59.88	4.44	LC	-
Southern Boubou	Laniarius ferrugineus	0.58	0.00	LC	-
Southern Fiscal Southern Grey-headed	Lanius collaris	76.16	13.33	LC	-
Sparrow	Passer diffusus	68.02	4.44	LC	-
Southern Masked Weaver	Ploceus velatus	91.86	20.00	LC	-
Southern Pochard	Netta erythrophthalma	24.42	6.67	LC	-
Southern Red Bishop	Euplectes orix	59.88	8.89	LC	-
Speckled Mousebird	Colius striatus	27.91	2.22	LC	-
Speckled Pigeon	Columba guinea	68.60	0.00	LC	-
Spike-heeled Lark	Chersomanes albofasciata	2.33	2.22	LC	-
Spotted Eagle-Owl	Bubo africanus	4.65	0.00	LC	-
Spotted Flycatcher	Muscicapa striata	6.98	0.00	LC	-
Spotted Thick-knee	Burhinus capensis	11.63	2.22	LC	-
Spur-winged Goose	Plectropterus gambensis	22.67	0.00	LC	-
Squacco Heron	Ardeola ralloides	1.74	0.00	LC	-
Streaky-headed Seedeater	Crithagra gularis	0.58	0.00	LC	-
Swainson's Spurfowl	Pternistis swainsonii	75.00	6.67	LC	-
Swallow-tailed Bee-eater	Merops hirundineus	0.58	0.00	LC	-
Tawny-flanked Prinia	Prinia subflava	2.91	0.00	LC	-
Temminck's Courser	Cursorius temminckii	0.58	0.00	LC	-
Three-banded Plover	Charadrius tricollaris	44.19	6.67	LC	-
Verreaux's Eagle	Aquila verreauxii	0.58	2.22	LC	VU
Village Indigobird	Vidua chalybeata	12.21	0.00	LC	-
Violet-backed Starling	Cinnyricinclus leucogaster	0.58	0.00	LC	-
Violet-eared Waxbill	Granatina granatina	16.86	0.00	LC	-
Wailing Cisticola	Cisticola lais	1.16	0.00	LC	-
Wattled Starling	Creatophora cinerea	32.56	0.00	LC	-
Western Barn Owl	Tyto alba	5.81	2.22	LC	-
Western Cattle Egret	Bubulcus ibis	65.70	8.89	LC	-
Whiskered Tern	Chlidonias hybrida	25.58	2.22	LC	-
White Stork	Ciconia ciconia	0.58	0.00	LC	-
White-backed Duck	Thalassornis leuconotus	4.07	0.00	LC	_
White-backed Mousebird	Colius colius	63.95	2.22	LC	-
White-bellied Sunbird	Cinnyris talatala	43.60	0.00	LC	-
White-breasted Cormorant	Phalacrocorax lucidus	19.19	2.22	LC	-
White-browed Scrub Robin	Cercotrichas leucophrys	4.07	0.00	LC	-
White-browed Sparrow-	Placapassar mahali	94.20	20 00	LC	
Weaver	Plocepasser mahali	84.30 15.70	28.89 4.44	LC	-
White-faced Whistling Duck White-fronted Bee-eater	Dendrocygna viduata Merops bullockoides		2.22	LC	-
White-rumped Swift		39.53 32.56	2.22	LC	-
white-rumped Swift	Apus caffer Cossypha humeralis	52.30	<i>L.LL</i>	LC	-

Species name	Scientific name	Full protocol reporting rate %	Ad hoc protocol reporting rate %	IUCN Red Data status	SA Red Data status
White-throated Swallow	Hirundo albigularis	22.67	4.44	LC	-
White-winged Tern	Chlidonias leucopterus	12.79	4.44	LC	-
White-winged Widowbird	Euplectes albonotatus	17.44	0.00	LC	-
Willow Warbler	Phylloscopus trochilus	9.88	0.00	LC	-
Wing-snapping Cisticola	Cisticola ayresii	2.91	0.00	LC	-
Wood Sandpiper	Tringa glareola	20.93	4.44	LC	-
Yellow Canary	Crithagra flaviventris	61.05	8.89	LC	-
Yellow-bellied Eremomela	Eremomela icteropygialis	5.23	0.00	LC	-
Yellow-billed Duck	Anas undulata	70.35	13.33	LC	-
Yellow-billed Kite	Milvus aegyptius	0.58	0.00	LC	-
Yellow-billed Stork	Mycteria ibis	1.74	2.22	LC	EN
Yellow-crowned Bishop	Euplectes afer	24.42	4.44	LC	-
Yellow-fronted Canary	Crithagra mozambica	1.16	0.00	LC	-
Zitting Cisticola	Cisticola juncidis	14.53	2.22	LC	-

APPENDIX C: ENVIRONMENTAL MANAGEMENT PROGRAMME

Management Plan for the Planning and Design Phase

Impact	Mitigation/Management Objectives and	Mitigation/Management	Monitoring			
impact	Outcomes	Actions	Methodology	Frequency	Responsibility	
Avifauna: Entrap	oment					
Entrapment of birds in the perimeter fences, leading to mortality.	Prevent mortality of avifauna	Increase the spacing between at least the top two wires (to a minimum of 30cm) and ensure they are correctly tensioned. Use a single perimeter fence if possible.	Design the facility with a bird-friendly perimeter fence. Use a single perimeter fence if possible.	Once-off during the planning phase.	Project Developer	
Total or partial displacement of avifauna due to habitat transformation associated with the vegetation clearance and the presence of the solar PV	cement due to habitat tran Prevent unnecessary displacement of avifauna by ensuring that sensitive habitat is protected.	Maintain 100m solar panel buffer zones around pans, dams, water reservoirs, rivers and wetlands.	Design the facility with a 100m solar panel buffer zones around pans, dams, water reservoirs, rivers and wetlands.	Once-off during the planning phase.	Project Developer	
plants and associated infrastructure.						

Management Plan for the Construction Phase

Imment	Mitigation/Management	Mitigation/Management		Monitoring	
Impact	Objectives and Outcomes	Actions	Methodology	Frequency	Responsibility
Avifauna: Dist	urbance				
The noise and movement associated with the construction activities at the development footprint will be a source of disturbance which would lead to the displacement of avifauna from the area	Prevent unnecessary displacement of avifauna by ensuring that contractors are aware of the requirements of the Construction Environmental Management Programme (CEMPr.)	 A site-specific CEMPr must be implemented, which gives appropriate and detailed description of how construction activities must be conducted. All contractors are to adhere to the CEMPr and should apply good environmental practice during construction. The CEMPr must specifically include the following: No off-road driving; Maximum use of existing roads, where possible; Measures to control noise and dust according to latest best practice; Restricted access to the rest of the property; 	 Implementation of the CEMPr. Oversee activities to ensure that the CEMPr is implemented and enforced via site audits and inspections. Report and record any non- compliance. Ensure that construction personnel are made aware of the impacts relating to off-road driving. Construction access roads must be demarcated clearly. Undertake site inspections to verify. Monitor the implementation of noise control mechanisms via site inspections and record and 	 On a daily basis Weekly Weekly Weekly 	 Contractor and ECO Contractor and ECO Contractor and ECO Contractor and ECO

	Impact Objectives and Mitigation/Management					Monitoring		
Impact	Objectives and Outcomes	Actions		Methodology		Frequency		Responsibility
			4.	report non- compliance. Ensure that the construction area is demarcated clearly and that construction personnel are made aware of these demarcations. Monitor via site inspections and report non- compliance.				
Total or partial displacement of avifauna due to habitat transformation associated with the vegetation clearance and the presence of the solar PV plants and associated infrastructure.	acement due to habitat tra Prevent unnecessary displacement of avifauna by ensuring that the rehabilitation of transformed areas is implemented by an appropriately qualified rehabilitation specialist, according to the recommendations of the botanical specialist study.	 Monitor rehabilitation via site audits and site inspections to ensure compliance. Record and report any non- compliance. 	1. 2. 3.	Appointment of rehabilitation specialist to develop habitat rehabilitation plan. Site inspections to monitor progress of rehabilitation. Adaptive management to ensure HRP goals are met.	1. 2. 3.	off Once a year	1. 2. 3.	Project Developer Facility Environmental Manager Project Developer and Facility Operational Manager
Avifauna: Mort Mortality of	ality due to collision with t Reduction of avian	he 132kV OHL OHL to be marked with	1.	Fit Eskom	2.	Once-off	1.	Contractor
avifauna due to collisions with the 132kV OHL.	collision mortality	Eskom approved Bird Flight Diverters (BFDs).		approved Bird Flight Diverters on the earthwire of the OHL.	3.	Once-off	2.	Contractor and ECO

Management Plan for the Operational Phase

Impact	Mitigation/Management Objectives and	Mitigation/Management		Monitoring			
impuot	Outcomes	Actions	Methodology	Frequency	Responsibility		
Avifauna: Elec	Avifauna: Electrocution in the onsite substations						
Electrocution of priority species in the onsite substations	Prevent the mortality of Red Data species	Reactive mitigation of hardware if electrocutions of Red Data species are recorded.	Investigate the electrocution incident and implement appropriate mitigation by insulating the hardware	As and when required	Facility Operational Manager		

Management Plan for the	Decommissioning Phase
-------------------------	------------------------------

Impact	Mitigation/Management Objectives and	Mitigation/Management Actions	N	lonitoring	
impact	Outcomes	mitigation/management Actions	Methodology	Frequency	Responsibility
Avifauna: Dis	placement due to disturbar	nce			
The noise and movement associated with the activities at the PV footprints will be a source of disturbance which would lead to the displacement of avifauna from the area	Prevent unnecessary displacement of avifauna by ensuring that contractors are aware of the requirements of the Decommissioning EMPr.	 A site-specific Decommissioning EMPr (DEMPr) must be implemented, which gives appropriate and detailed description of how construction activities must be conducted. All contractors are to adhere to the DEMPr and should apply good environmental practice during decommissioning. The DEMPr must specifically include the following: No off-road driving; Maximum use of existing roads during the decommissioning phase and the construction of new roads should be kept to a minimum as far as practical; Measures to control noise and dust according to latest best practice; Restricted access to the rest of the property; 	that the DEMPr is	 On a daily basis Weekly Weekly Weekly 	 Contractor and ECO Contractor and ECO Contractor and ECO Contractor and ECO

APPENDIX D: IMPACT ASSESMENT METHODOLOGY

Method for Impact Identification and Evaluation

The identification and assessment of environmental impacts is a multi-faceted process, using a combination of quantitative and qualitative descriptions and evaluations. It involves applying scientific measurements and professional judgement to determine the significance of environmental impacts associated with the proposed project. The process involves consideration of, *inter alia*: the purpose and need for the project; views and concerns of interested and affected parties (I&APs); social and political norms, and general public interest.

Identification and Description of Impacts

Identified impacts are described in terms of the nature of the impact, compliance with legislation and accepted standards, receptor sensitivity and the significance of the predicted environmental change (before and after mitigation). Mitigation measures may be existing measures or additional measures that were identified through the impact assessment and associated specialist input. The impact rating system considers the confidence level that can be placed on the successful implementation of mitigation.

Evaluation of Impacts and Mitigation Measures

INTRODUCTION

Impacts are assessed using SLR's standard convention for assessing the significance of impacts, a summary of which is provided below.

In assigning significance ratings to potential impacts before and after mitigation the approach presented below is to be followed.

- 1. **Determine the impact consequence rating:** This is a function of the "intensity", "duration" and "extent" of the impact (see Section 0). The consequence ratings for combinations of these three criteria are given in Section 0.
- Determine impact significance rating: The significance of an impact is a function of the consequence of the impact occurring and the probability of occurrence (see Section 0). Significance is determined using the table in Section 0.
- 3. **Modify significance rating (if necessary):** Significance ratings are based on largely professional judgement and transparent defined criteria. In some instances, therefore, whilst the significance rating of potential impacts might be "low", the importance of these impacts to local communities or individuals might be extremely high. The importance/value which interested and affected parties attach to impacts will be highlighted, and recommendations should be made as to ways of avoiding or minimising these perceived negative impacts through project design, selection of appropriate alternatives and / or management.
- 4. Determine degree of confidence of the significance assessment: Once the significance of the impact has been determined, the degree of confidence in the assessment will be qualified (see Section 0). Confidence in the prediction is associated with any uncertainties, for example, where information is insufficient to assess the impact.

CRITERIA FOR IMPACT ASSESSMENT

The criteria for impact assessment are provided below.

Criteria for ranking of the INTENSITY (SEVERITY) of environmental impacts ZERO TO VERY LOW Negligible change, disturbance or nuisance. The impact affects the environment in such a way that natural functions and processes are not affected. People / communities are able to adapt with relative ease and maintain pre-impact livelihoods. LOW Minor (Slight) change, disturbance or nuisance. The impact on the environment is not detectable or there is no perceptible change to people's livelihood. MEDIUM Moderate change, disturbance or discomfort. Where the affected environment is altered, but natural functions and processes continue, notification and diffed way. People/communities are able to adapt with some difficulty and maintain pre-impact livelihoods but only with a degree of support. Prominent change, disturbance or discomfort. Where natural functions or processes are altered to the extent that they will temporarily or permanently cease. Affected people/communities will not be able to adapt to changes or continue to maintain-pre impact livelihoods. Criteria for ranking the DURATION of impacts S HORT TERM < 5 years. ILONG TERM 5 to < 15 years, but where the impact will eventually cease either because of natural processes or by human intervention. Criteria for ranking the EXTENT / SPATIAL SCALE Impact is confined to project or study area or part thereof, e.g. limited to the area of interest and its immediate surroundings. Criteria for ranking the EXTENT / SPATIAL SCALE of impacts Impact is confined to the region, e.g. catchment, municipal region, etc. Criteria fo	Criteria	Rating	Description
INTENSITY (SEVERITY) of environmental impacts ZERO TO VERY LOW environment in such a way that natural functions and processes are not affected. People / communities are able to adapt with relative ease and maintain pre-impact livelihoods. Minor (Slight) change, disturbance or nuisance. The impact on the environment is not detectable or there is no perceptible change to people's livelihood. Minor (Slight) change, disturbance or discomfort. Where the affected environment is altered, but natural functions and processes continue, albeit in a modified way. People/communities are able to adapt with adegree of support. MEDIUM Prominent change, disturbance or discomfort. Where natural functions or processes are altered to the extent that they will temporarily or permanently cease. Affected people/communities will not be able to adapt to changes or continue to maintain-pre impact livelihoods. Criteria for ranking the DURATION of impacts SHORT TERM < 15 years.			
Final sease and maintain pre-impact livelihoods. ILOW Minor (Slight) change, disturbance or nuisance. The impact on the environment is not detectable or there is no perceptible change to people's livelihood. MEDIUM Moderate change, disturbance or disconfort. Where the affected environment is altered, but natural functions and processes continue, albeit in a modified way. People/communities are able to adapt with some difficulty and maintain pre-impact livelihoods but only with a degree of support. Prominent change, disturbance or degradation. Where natural functions and processes continue, albeit in a modified way. People/communities are able to adapt with some difficulty and maintain pre-impact livelihoods but only with a degree of support. Prominent change, disturbance or degradation. Where natural functions and processes or processes are altered to the extent that they will temporarily or permanently cease. Affected people/communities will not be able to adapt to changes or continue to maintain-pre-impact livelihoods. Criteria for ranking the EXTENT / SPATIAL SCALE SHORT TERM 5 to <15 years. DURATION of impacts MEDIUM TERM 5 to <15 years. ILONG TERM >15 years, but where the impact will eventually cease either because of natural processes or by human intervention. PERMANENT Impact is confined to project or study area or part thereof, e.g. limited to the area of interest and its immediate surroundings. Criteria for ranking the EXTENT / SPATIAL SCALE Impact is confined to the region, e.g. catchment, municipal region, etc	-	ZERO TO VERY	
LOW Minor (Slight) change, disturbance or nuisance. The impact on the environment is not detectable or there is no perceptible change to people's livelihood. MeDIUM Moderate change, disturbance or discomfort. Where the affected environment is altered, but natural functions and processes continue, albeit in a modified way. People/communities are able to adapt with some difficulty and maintain pre-impact livelihoods but only with a degree of support. MEDIUM Prominent change, disturbance or degradation. Where natural functions or processes are altered to the extent that they will temporarily or permanently cease. Affected people/communities will not be able to adapt to changes or continue to maintain-pre impact livelihoods. Criteria for ranking the DURATION of impacts SHORT TERM < 5 years. ILONG TERM > 15 years. > 15 years. ILONG TERM > 15 years. > 15 years. PERMANENT Where mitigation either by natural processes or by human intervention. PERMANENT Where mitigation either by natural processes or by human intervention. Of impacts Impact is confined to the region, e.g. catchment, municipal region, etc. of impacts Impact is confined to the region, e.g. catchment, municipal region, etc. Of impacts Impact is confined to the region, e.g. catchment, municipal region, etc. INTENNATIONAL Impact is confined to the country as a whole, e.g. South Africa, etc.		LOW	
LOW environment is not detectable or there is no perceptible change to people's livelihood. MeDIUM Moderate change, disturbance or disconfort. Where the affected environment is altered, but natural functions and processes continue, albeit in a modified way. People/communities are able to adapt with some difficulty and maintain pre-impact livelihoods but only with a degree of support. MEDIUM Prominent change, disturbance or degradation. Where natural functions or processes are altered to the extent that they will temporarily or permanently cease. Affected people/communities will not be able to adapt to changes or continue to maintain-pre impact livelihoods. Criteria for ranking the DURATION of impacts SHORT TERM <5 years. MEDIUM TERM 5 to <15 years. LONG TERM >15 years, but where the impact will eventually cease either because of natural processes or by human intervention. PREMANENT Where mitigation either by natural processes or by human intervention will not occur in such a way or in such time span that the impact can be considered transient. of impacts LOCAL Impact is confined to the region, e.g. catchment, municipal region, etc. of impacts IMPROBABLE Mere the possibility of the immediate surroundings. OF IMPACABALILTY of impacts IMPROBABLE Where there is a distinct possibility that the impact would occur, i.e. > 30 to \$0% chance of occurring. PROSIBLE Where the impact would occur re			ease and maintain pre-impact livelihoods.
Image: People's livelihood. MEDIUM Moderate change, disturbance or discomfort. Where the affected environment is altered, but natural functions and processes continue, albeit in a modified way. People/communities are able to adapt with some difficulty and maintain pre-impact livelihoods but only with a degree of support. HIGH Prominent change, disturbance or degradation. Where natural functions or processes are altered to the extent that they will temporarily or permanently cease. Affected people/communities will not be able to adapt to changes or continue to maintain-pre impact livelihoods. Criteria for ranking the DUM TERM S to <15 years. DURATION of impacts MAEDIUM TERM S to <15 years. DURATION of impacts MEDIUM TERM S to <15 years. PERMANENT Where mitigation either by natural processes or by human intervention. PREMANENT Where mitigation either by natural processes or by human intervention. Criteria for ranking the EXTENT / SPATIAL SCALE Impact is confined to project or study area or part thereof, e.g. limited to the area of interest and its immediate surroundings. of impacts Impact is confined to the region, e.g. catchment, municipal region, etc. NTIONAL Impact is confined to the country as a whole, e.g. South Africa, etc. Impact is confined to the country as a whole, e.g. South Africa, etc. Impact is confined to the country as a whole, e.g. South Africa, etc.			Minor (Slight) change, disturbance or nuisance. The impact on the
Moderate change, disturbance or discomfort. Where the affected environment is altered, but natural functions and processes continue, albeit in a modified way. People/communities are able to adapt with some difficulty and maintain pre-impact livelihoods but only with a degree of support. HIGH Prominent change, disturbance or degradation. Where natural functions or processes are altered to the extent that they will temporarily or permanently cease. Affected people/communities will not be able to adapt to changes or continue to maintain-pre impact livelihoods. Criteria for ranking the DURATION of impacts SHORT TERM S to <15 years.		LOW	environment is not detectable or there is no perceptible change to
MEDIUM environment is altered, but natural functions and processes continue, albeit in a modified way. People/communities are able to adapt with some difficulty and maintain pre-impact livelihoods but only with a degree of support. HIGH Prominent change, disturbance or degradation. Where natural functions or processes are altered to the extent that they will temporarily or permanently cease. Affected people/communities will not be able to adapt to changes or continue to maintain-pre impact livelihoods. Criteria for ranking the DURATION of impacts SHORT TERM < 5 years.			people's livelihood.
MEDIUM albeit in a modified way. People/communities are able to adapt with some difficulty and maintain pre-impact livelihoods but only with a degree of support. Prominent change, disturbance or degradation. Where natural functions or processes are altered to the extent that they will temporarily or permanently cease. Affected people/communities will not be able to adapt to changes or continue to maintain-pre impact livelihoods. Criteria for ranking the DURATION of impacts SHORT TERM < 5 years. LONG TERM 5 to < 15 years. PERMANENT Sto < 15 years. LONG TERM Where mitigation either by natural processes or by human intervention will not occur in such a way or in such time span that the impact is confined to project or study area or part thereof, e.g. limited to the area of interest and its immediate surroundings. of impacts REGIONAL Impact is confined to the country as a whole, e.g. South Africa, etc. NATIONAL Impact extends beyond the national scale. Criteria for determining the PROBABILITY of impacts Where the possibility of the impact to materialise is very low either because of design or historic experience, i.e. < 30% chance of occurring. POSSIBLE Where the is nost likely that the impact would occur, i.e. > 60 to < 80% chance of occurring. PROBABLE Where the is most likely that the impact would occur, i.e. > 60 to < 80% chance of occurring.			Moderate change, disturbance or discomfort. Where the affected
some difficulty and maintain pre-impact livelihoods but only with a degree of support. HIGH Prominent change, disturbance or degradation. Where natural functions or processes are altered to the extent that they will temporarily or permanently cease. Affected people/communities will not be able to adapt to changes or continue to maintain-pre impact livelihoods. Criteria for ranking the DURATION of impacts SHORT TERM < 5 years. DURATION of impacts MEDIUM TERM 5 to < 15 years. DURATION of impacts Permanently coses or by human intervention. PERMANENT Sto < 15 years. DURATION of impacts PERMANENT > 15 years. PERMANENT Where mitigation either by natural processes or by human intervention. PERMANENT Where mitigation either by natural processes or by human intervention. Criteria for ranking the EXTENT / SPATIAL SCALE Impact is confined to project or study area or part thereof, e.g. limited to the area of interest and its immediate surroundings. of impacts REGIONAL Impact is confined to the country as a whole, e.g. South Africa, etc. NATIONAL Impact is confined to the country as a whole, e.g. South Africa, etc. INTERNATIONAL Impact is confined to the country as a whole, e.g. South Africa, etc. PROBABILITY of impact Yhere the possibility of the impact to m			environment is altered, but natural functions and processes continue,
Image: synthesize in the synthesynthesize inthesize in the synthesize intersynthesize in the synt		MEDIUM	albeit in a modified way. People/communities are able to adapt with
HIGH Prominent change, disturbance or degradation. Where natural functions or processes are altered to the extent that they will temporarily or permanently cease. Affected people/communities will not be able to adapt to changes or continue to maintain-pre impact livelihoods. Criteria for ranking the DURATION of impacts SHORT TERM < 5 years.			some difficulty and maintain pre-impact livelihoods but only with a
HIGHfunctions or processes are altered to the extent that they will temporarily or permanently cease. Affected people/communities will not be able to adapt to changes or continue to maintain-pre impact livelihoods.Criteria for ranking the DURATION of impactsSHORT TERM< 5 years.			degree of support.
HIGH temporarily or permanently cease. Affected people/communities will not be able to adapt to changes or continue to maintain-pre impact livelihoods. Criteria for ranking the DURATION of impacts SHORT TERM < 5 years. IONG TERM 5 to < 15 years. IONG TERM > 15 years, but where the impact will eventually cease either because of natural processes or by human intervention. PERMANENT Where mitigation either by natural processes or by human intervention. Criteria for ranking the EXTENT / SPATIAL SCALE of impacts Impact is confined to project or study area or part thereof, e.g. limited to the area of intervest and its immediate surroundings. of impacts Impact is confined to the region, e.g. catchment, municipal region, etc. INTERNATIONAL Impact is confined to the country as a whole, e.g. South Africa, etc. INTERNATIONAL Impact is confined to the country as a whole, e.g. South Africa, etc. INTERNATIONAL Impact is confined to the materialise is very low either because of design or historic experience, i.e. < 30% chance of occurring. POSSIBLE Where there is a distinct possibility that the impact would occur, i.e. > 30 to < 60% chance of occurring. PROBABLE Where the is most likely that the impact would occur, i.e. > 60 to < 80% chance of occurring. PROBABLE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring. </th <th></th> <th></th> <th>Prominent change, disturbance or degradation. Where natural</th>			Prominent change, disturbance or degradation. Where natural
Criteria for ranking the DURATION of impacts SHORT TERM < 5 years. DURATION of impacts MEDIUM TERM 5 to < 15 years. LONG TERM > 15 years, but where the impact will eventually cease either because of natural processes or by human intervention. PERMANENT Where mitigation either by natural processes or by human intervention. Criteria for ranking the EXTENT / SPATIAL SCALE of impacts Impact is confined to project or study area or part thereof, e.g. limited to the area of interest and its immediate surroundings. of impacts Impact is confined to the region, e.g. catchment, municipal region, etc. NATIONAL Impact is confined to the country as a whole, e.g. South Africa, etc. INTERNATIONAL Impact extends beyond the national scale. Criteria for determining the PROBABILITY of impacts Where there is a distinct possibility of the impact to materialise is very low either because of design or historic experience, i.e. < 30% chance of occurring. POSSIBLE POSSIBLE Where there is a distinct possibility that the impact would occur, i.e. > 60 to < 80% chance of occurring. PROBABLE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.			functions or processes are altered to the extent that they will
Inveliboods. Criteria for ranking the DURATION of impacts SHORT TERM < 5 years.		HIGH	temporarily or permanently cease. Affected people/communities will
Criteria for ranking the DURATION of impacts SHORT TERM < 5 years.			
DURATION of impacts MEDIUM TERM 5 to < 15 years.			livelihoods.
LONG TERM > 15 years, but where the impact will eventually cease either because of natural processes or by human intervention. PERMANENT Where mitigation either by natural processes or by human intervention. Criteria for ranking the EXTENT / SPATIAL SCALE of impacts LOCAL Impact is confined to project or study area or part thereof, e.g. limited to the area of interset and its immediate surroundings. of impacts REGIONAL Impact is confined to the region, e.g. catchment, municipal region, etc. NATIONAL Impact is confined to the country as a whole, e.g. South Africa, etc. INTERNATIONAL Impact extends beyond the national scale. Criteria for determining the PROBABILITY of impacts Where the possibility of the impact to materialise is very low either because of design or historic experience, i.e. ≤ 30% chance of occurring. POSSIBLE Where there is a distinct possibility that the impact would occur, i.e. > 30 to ≤ 60% chance of occurring. PROBABLE Where it is most likely that the impact would occur, i.e. > 60 to ≤ 80% chance of occurring. DEFINITE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.	-	SHORT TERM	
LONG TERM of natural processes or by human intervention. PERMANENT Where mitigation either by natural processes or by human intervention will not occur in such a way or in such time span that the impact can be considered transient. Criteria for ranking the EXTENT / SPATIAL SCALE of impacts LOCAL Impact is confined to project or study area or part thereof, e.g. limited to the area of interest and its immediate surroundings. MATIONAL Impact is confined to the region, e.g. catchment, municipal region, etc. NATIONAL Impact is confined to the country as a whole, e.g. South Africa, etc. IntERNATIONAL Impact seconfined to the national scale. Criteria for determining the PROBABILITY of impacts Where the possibility of the impact to materialise is very low either because of design or historic experience, i.e. ≤ 30% chance of occurring. POSSIBLE Where there is a distinct possibility that the impact would occur, i.e. > 30 to ≤ 60% chance of occurring. PROBABLE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.	DURATION of impacts	MEDIUM TERM	5 to < 15 years.
Criteria for ranking the EXTEND A Where mitigation either by natural processes or by human intervention. Criteria for ranking the EXTENT / SPATIAL SCALE of impacts Impact is confined to project or study area or part thereof, e.g. limited to the area of interest and its immediate surroundings. Impact is confined to the region, e.g. catchment, municipal region, etc. Impact is confined to the region, e.g. catchment, municipal region, etc. INTERNATIONAL Impact is confined to the country as a whole, e.g. South Africa, etc. INTERNATIONAL Impact extends beyond the national scale. Impacts Where the possibility of the impact to materialise is very low either because of design or historic experience, i.e. ≤ 30% chance of occurring. POSSIBLE Where there is a distinct possibility that the impact would occur, i.e. > 30 to ≤ 60% chance of occurring. PROBABLE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.		LONG TERM	> 15 years, but where the impact will eventually cease either because
PERMANENTintervention will not occur in such a way or in such time span that the impact can be considered transient.Criteria for ranking the EXTENT / SPATIAL SCALE of impactsLOCALImpact is confined to project or study area or part thereof, e.g. limited to the area of interest and its immediate surroundings.REGIONALImpact is confined to the region, e.g. catchment, municipal region, etc.NATIONALImpact is confined to the country as a whole, e.g. South Africa, etc.INTERNATIONALImpact extends beyond the national scale.Criteria for determining the PROBABILITY of impactsIMPROBABLEPOSSIBLEWhere there is a distinct possibility that the impact would occur, i.e. > 30 to \$ 60% chance of occurring.POSSIBLEWhere there is a distinct possibility that the impact would occur, i.e. \$ 30 to \$ 60% chance of occurring.DEFINITEWhere the impact would occur regardless of any prevention measures, i.e. \$ 80% chance of occurring.			of natural processes or by human intervention.
Criteria for ranking the EXTENT / SPATIAL SCALELOCALImpact is confined to project or study area or part thereof, e.g. limited to the area of interest and its immediate surroundings.of impactsREGIONALImpact is confined to the region, e.g. catchment, municipal region, etc.NATIONALImpact is confined to the country as a whole, e.g. South Africa, etc.INTERNATIONALImpact extends beyond the national scale.Criteria for determining the PROBABILITY of impactsIMPROBABLEPOSSIBLEWhere the possibility of the impact to materialise is very low either because of design or historic experience, i.e. < 30% chance of occurring.POSSIBLEWhere there is a distinct possibility that the impact would occur, i.e. <> 30 to < 60% chance of occurring.			
Criteria for ranking the EXTENT / SPATIAL SCALE of impactsLOCALImpact is confined to project or study area or part thereof, e.g. limited to the area of interest and its immediate surroundings.REGIONALImpact is confined to the region, e.g. catchment, municipal region, etc.NATIONALImpact is confined to the country as a whole, e.g. South Africa, etc.INTERNATIONALImpact extends beyond the national scale.Criteria for determining the PROBABILITY of impactsIMPROBABLEPOSSIBLEWhere the possibility of the impact to materialise is very low either because of design or historic experience, i.e. < 30% chance of occurring.POSSIBLEWhere there is a distinct possibility that the impact would occur, i.e. > 30 to < 60% chance of occurring.		PERMANENT	
EXTENT / SPATIAL SCALE of impacts LOCAL to the area of interest and its immediate surroundings. Impact is confined to the region, e.g. catchment, municipal region, etc. Impact is confined to the country as a whole, e.g. South Africa, etc. NATIONAL Impact is confined to the country as a whole, e.g. South Africa, etc. INTERNATIONAL Impact extends beyond the national scale. Criteria for determining the PROBABILITY of impacts IMPROBABLE POSSIBLE Where the possibility of the impact to materialise is very low either because of design or historic experience, i.e. ≤ 30% chance of occurring. POSSIBLE Where there is a distinct possibility that the impact would occur, i.e. > 30 to ≤ 60% chance of occurring. PROBABLE Where it is most likely that the impact would occur, i.e. > 60 to ≤ 80% chance of occurring. DEFINITE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.			
EXTENT / SPATIAL SCALE of impacts to the area of interest and its immediate surroundings. REGIONAL Impact is confined to the region, e.g. catchment, municipal region, etc. NATIONAL Impact is confined to the country as a whole, e.g. South Africa, etc. INTERNATIONAL Impact extends beyond the national scale. Criteria for determining the PROBABILITY of impacts IMPROBABLE POSSIBLE Where the possibility of the impact to materialise is very low either because of design or historic experience, i.e. ≤ 30% chance of occurring. POSSIBLE Where there is a distinct possibility that the impact would occur, i.e. > 30 to ≤ 60% chance of occurring. PROBABLE Where the impact would occur, i.e. > 60 to ≤ 80% chance of occurring. DEFINITE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.	-	LOCAL	
REGIONAL Import to common to common to get the region of edget edget of edget of ed	-		to the area of interest and its immediate surroundings.
NATIONAL Impact is confined to the country as a whole, e.g. South Africa, etc. INTERNATIONAL Impact extends beyond the national scale. Criteria for determining the PROBABILITY of impacts IMPROBABLE Where the possibility of the impact to materialise is very low either because of design or historic experience, i.e. ≤ 30% chance of occurring. POSSIBLE Where there is a distinct possibility that the impact would occur, i.e. > 30 to ≤ 60% chance of occurring. PROBABLE Where it is most likely that the impact would occur, i.e. > 60 to ≤ 80% chance of occurring. DEFINITE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.	of impacts	REGIONAL	Impact is confined to the region, e.g. catchment, municipal region,
INTERNATIONAL Impact extends beyond the national scale. Criteria for determining the PROBABILITY of impacts IMPROBABLE Where the possibility of the impact to materialise is very low either because of design or historic experience, i.e. < 30% chance of occurring. POSSIBLE Where there is a distinct possibility that the impact would occur, i.e. < 30 to < 60% chance of occurring. PROBABLE Where it is most likely that the impact would occur, i.e. > 60 to < 80% chance of occurring. DEFINITE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.			
Criteria for determining the PROBABILITY of impacts IMPROBABLE Where the possibility of the impact to materialise is very low either because of design or historic experience, i.e. ≤ 30% chance of occurring. POSSIBLE Where there is a distinct possibility that the impact would occur, i.e. > 30 to ≤ 60% chance of occurring. PROBABLE Where it is most likely that the impact would occur, i.e. > 60 to ≤ 80% chance of occurring. DEFINITE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.		NATIONAL	
the PROBABILITY of impacts IMPROBABLE because of design or historic experience, i.e. ≤ 30% chance of occurring. POSSIBLE Where there is a distinct possibility that the impact would occur, i.e. > 30 to ≤ 60% chance of occurring. PROBABLE Where it is most likely that the impact would occur, i.e. > 60 to ≤ 80% chance of occurring. DEFINITE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.		INTERNATIONAL	Impact extends beyond the national scale.
the PROBABILITY of impacts IMPROBABLE because of design or historic experience, i.e. ≤ 30% chance of occurring. POSSIBLE Where there is a distinct possibility that the impact would occur, i.e. > 30 to ≤ 60% chance of occurring. PROBABLE Where it is most likely that the impact would occur, i.e. > 60 to ≤ 80% chance of occurring. DEFINITE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.	Criteria for determining		Where the possibility of the impact to materialise is very low either
POSSIBLE Where there is a distinct possibility that the impact would occur, i.e. > 30 to ≤ 60% chance of occurring. PROBABLE Where it is most likely that the impact would occur, i.e. > 60 to ≤ 80% chance of occurring. DEFINITE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.		IMPROBABLE	because of design or historic experience, i.e. ≤ 30% chance of
POSSIBLE > 30 to ≤ 60% chance of occurring. PROBABLE Where it is most likely that the impact would occur, i.e. > 60 to ≤ 80% chance of occurring. DEFINITE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.	impacts		occurring.
> 30 to ≤ 60% chance of occurring. PROBABLE Where it is most likely that the impact would occur, i.e. > 60 to ≤ 80% chance of occurring. DEFINITE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.		DOCCIDIE	Where there is a distinct possibility that the impact would occur, i.e.
PROBABLE chance of occurring. DEFINITE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.		POSSIBLE	> 30 to \leq 60% chance of occurring.
DEFINITE Where the impact would occur regardless of any prevention measures, i.e. > 80% chance of occurring.			Where it is most likely that the impact would occur, i.e. > 60 to \leq 80%
DEFINITE measures, i.e. > 80% chance of occurring.		PROBABLE	chance of occurring.
measures, i.e. > 80% chance of occurring.		DEFINITE	Where the impact would occur regardless of any prevention
IOW < 35% sure of impact prediction		DEFINITE	measures, i.e. > 80% chance of occurring.
		LOW	≤ 35% sure of impact prediction.

Criteria	Rating	Description
Criteria for determining	MEDIUM	> 35% and \leq 70% sure of impact prediction.
the DEGREE OF CONFIDENCE of the assessment	HIGH	> 70% sure of impact prediction.
Criteria for the DEGREE	NONE	No change in impact after mitigation.
TO WHICH IMPACT CAN BE MITIGATED - the	VERY LOW	Where the significance rating stays the same, but where mitigation will reduce the intensity of the impact.
degree to which an impact	LOW	Where the significance rating drops by one level, after mitigation.
can be reduced / enhanced	MEDIUM	Where the significance rating drops by two to three levels, after mitigation.
	HIGH	Where the significance rating drops by more than three levels, after mitigation.
Criteria for LOSS OF RESOURCES - the degree to which a resource is	LOW	Where the activity results in a loss of a particular resource but where the natural, cultural and social functions and processes are not affected.
permanently affected by the activity, i.e. the degree	MEDIUM	Where the loss of a resource occurs, but natural, cultural and social functions and processes continue, albeit in a modified way.
to which a resource is irreplaceable	HIGH	Where the activity results in an irreplaceable loss of a resource.
Criteria for REVERSIBILITY	IRREVERSIBLE	Where the impact is permanent.
 the degree to which an impact can be reversed 	PARTIALLY REVERSIBLE	Where the impact can be partially reversed.
	FULLY REVERSIBLE	Where the impact can be completely reversed.

DETERMINING CONSEQUENCE

Consequence attempts to evaluate the importance of a particular impact, and in doing so incorporates extent, duration and intensity. The ratings and description for determining consequence are provided below.

Rating	Description *
	Impacts could be EITHER:
VERY HIGH	of <i>high intensity</i> at a <i>regional level</i> and endure in the <i>long term</i> ;
	OR of <i>high intensity</i> at a <i>national level</i> in the <i>medium term</i> ;
	OR of <i>medium intensity</i> at a <i>national level</i> in the <i>long term</i> .
	Impacts could be EITHER:
	of high intensity at a regional level and endure in the medium term ;
	OR of <i>high intensity</i> at a <i>national level</i> in the <i>short term</i> ;
HIGH	OR of <i>medium intensity</i> at a <i>national level</i> in the <i>medium term</i> ;
	OR of <i>low intensity</i> at a <i>national level</i> in the <i>long term</i> ;
	OR of <i>high intensity</i> at a <i>local level</i> in the <i>long term</i> ;
	OR of <i>medium intensity</i> at a <i>regional level</i> in the <i>long term</i> .
	Impacts could be EITHER:
MEDIUM	of high intensity at a local level and endure in the medium term ;

Rating	Description *
	OR of <i>medium intensity</i> at a <i>regional level</i> in the <i>medium term</i> ;
	OR of <i>high intensity</i> at a <i>regional level</i> in the <i>short term</i> ;
	OR of <i>medium intensity</i> at a <i>national level</i> in the <i>short term</i> ;
	OR of <i>medium intensity</i> at a <i>local level</i> in the <i>long term</i> ;
	OR of <i>low intensity</i> at a <i>national level</i> in the <i>medium term;</i>
	OR of <i>low intensity</i> at a <i>regional level</i> in the <i>long term</i> .
	Impacts could be EITHER
	of <i>low intensity</i> at a <i>regional level</i> and endure in the <i>medium term</i> ;
	OR of <i>low intensity</i> at a <i>national level</i> in the <i>short term</i> ;
LOW	OR of <i>high intensity</i> at a <i>local level</i> and endure in the <i>short term</i> ;
	OR of <i>medium intensity</i> at a <i>regional level</i> in the <i>short term</i> ;
	OR of <i>low intensity</i> at a <i>local level</i> in the <i>long term</i> ;
	OR of <i>medium intensity</i> at a <i>local level</i> and endure in the <i>medium term</i> .
	Impacts could be EITHER
	of <i>low intensity</i> at a <i>local level</i> and endure in the <i>medium term</i> ;
VERY LOW	OR of <i>low intensity</i> at a <i>regional level</i> and endure in the <i>short term</i> ;
	OR of <i>low to medium intensity</i> at a <i>local level</i> and endure in the <i>short term</i> .
	OR Zero to very low intensity with any combination of extent and duration.

* Note: For any impact that is considered to be "Permanent" or "International" apply the "Long-Term" and "National" ratings, respectively.

DETERMINING SIGNIFICANCE

The consequence rating is considered together with the probability of occurrence in order to determine the overall significance using the table below.

			PROBA	BILITY	
		IMPROBABLE	POSSIBLE	PROBABLE	DEFINITE
	VERY LOW	INSIGNIFICANT	INSIGNIFICANT	VERY LOW	VERY LOW
ENCI	LOW	VERY LOW	VERY LOW	LOW	LOW
EQU	MEDIUM	LOW	LOW	MEDIUM	MEDIUM
CONSEQUENCE	нібн	MEDIUM	MEDIUM	HIGH	HIGH
Ŭ	VERY HIGH	HIGH	HIGH	VERY HIGH	VERY HIGH

In certain cases it may not be possible to determine the significance of an impact. In these instances the significance is **UNKNOWN**.

APPENDIX E: SITE SENSITIVITY VERIFICATION REPORT

SITE SENSITIVITY VERIFICATION REPORT

ROAN 1 & 2 PV SOLAR FACILITIES

Hartbeesfontein, North-West Province

February 2021

Chris van Rooyen Consulting

VAT#: 4580238113 email: vanrooyen.chris@gmail.com Tel: +27 (0)82 4549570 cell

SITE SENSITIVITY VERIFICATION REPORT 68

1.	Introduction	70
2.	Methodology	70
3.	Results of site assessment	.71
4.	Environmental sensitivities	.85
5.	Conclusions	.86
Appe	ndix A: Species List for the broader area	.87
Apper	ndix B: Buffer zones identified to date	.89

1. Introduction

Prior to commencing with the specialist assessment in accordance with Appendix 6 of the National Environmental Management Act (Act 107 of 1998, as amended) (NEMA) Environmental Impact Assessment (EIA) Regulations of 2014, a site sensitivity verification was undertaken in order to confirm the current land use and environmental sensitivity of the proposed project site as identified by the National Web-Based Environmental Screening Tool (Screening Tool). NEMA makes provision for the prescription of procedures for the assessment and minimum criteria for reporting on identified environmental themes (Sections 24(5)(a) and (h) and 44) when applying for environmental authorisation. The Protocol for the specialist assessment and minimum report content requirements for environmental impacts on terrestrial animal species (Government Gazette No 43855, 30 October 2020 is applicable in the case of solar PV developments.

The details of the site sensitivity verification are noted below:

Date of Site Visit	23 December 2021
Supervising Specialist Name	Albert Froneman
Professional Registration Number	MSc Conservation Biology (SACNASP
	Zoological Science Registration number
	400177/09)
Specialist Affiliation / Company	Chris van Rooyen Consulting

2. Methodology

The following methods were used to compile the SSV report:

- Bird distribution data of the South African Bird Atlas 2 (SABAP 2) was obtained from the Animal Demography Unit of the University of Cape Town (ADU 2021), to ascertain which species occurs within the broader area i.e., within a block consisting of 4 pentad grid cells within which the proposed projects are situated. A pentad grid cell covers 5 minutes of latitude by 5 minutes of longitude (5'× 5'). Each pentad is approximately 8 × 7.6 km. To date, a total of 172 full protocol lists (i.e., surveys lasting a minimum of two hours each) have been completed for this area. In addition, 45 ad hoc protocol lists (i.e., surveys lasting less than two hours but still yielding valuable data) have been completed.
- The national threatened status of all priority species was determined with the use of the most recent edition of the Red Data Book of Birds of South Africa (Taylor *et al.* 2015), and the latest authoritative summary of southern African bird biology (Hockey *et al.* 2005).
- The global threatened status of all priority species was determined by consulting the (2021.3) IUCN Red List of Threatened Species (http://www.iucnredlist.org/).
- A classification of the vegetation types in the study area was obtained from the Atlas of Southern African Birds 1 (SABAP 1) (Harrison *et al.* 1997) and the National Vegetation Map (2012 beta2) from the South African National Biodiversity Institute website (Mucina & Rutherford 2006 & http://bgisviewer.sanbi.org).
- The Important Bird Areas of Southern Africa (Marnewick *et al.* 2015) was consulted for information on potentially relevant Important Bird Areas (IBAs).
- Satellite imagery (Google Earth ©2021) was used in order to view the broader study area on a landscape level and to help identify sensitive bird habitat.

- The South African National Biodiversity BGIS map viewer was used to determine the locality of the proposed site relative to National Protected Areas.
- The DFFE National Screening Tool was used to determine the assigned avian sensitivity of the proposed project areas.
- An on-site survey conducted on 23 December 2021. The development site was inspected with a 4x4 vehicle and on foot. All birds were recorded.
- Priority species were defined as follows:
 - South African Red Data species.
 - D South African endemics and near-endemics.
 - Baptors
 - Waterbirds

3. Results of site assessment

The study area and immediate environment is classified as **Low** and **Medium** sensitivity for terrestrial animals according to the Terrestrial Animal Species Theme. The Medium classification is due to the possible occurrence of certain mammal species, Spotted-necked Otter *Hydrictis maculicollis* and Makwassie Musk Shrew *Crocidura maquassiensis*, and not due to potential avian species.

The study area does not seem to contain suitable habitat for avian species of conservation concern (SCC) as defined in the Protocol for the specialist assessment and minimum report content requirements for environmental impacts on terrestrial animal species (Government Gazette No 43855, 30 October 2020, namely listed on the IUCN Red List of Threatened Species or South Africa's National Red List website as Critically Endangered, Endangered or Vulnerable. No SCC were encountered during the field survey.

Only one Endemic species was noted, the South African Cliff Swallow Petrochelidon spilodera.

Based on the field survey to date, the classification of **Low** sensitivity for avifauna in the screening tool is confirmed for the proposed study area.

			11		
			7-A.		
			here and a		
		former of the second seco			
Legend:	зh				
Very High High Medium Low			Est Japan METLENIC	min USSS interval INCREM Internet Kong, Esi Koes, E ao controutors and me S s us	erii Thasandi
High		Likkryps	Est Japan METLENIC	hins Hong Kongt, Esti Korea, E	erii Thasandi
Where only screening re or specialist with their ur species may	a sensitive port and a is required nique ident be prone t	plant unique numb n assessment is requ to email SANBI at <u>e</u> tifiers for which info to illegal harvesting i	Est Japan METLENIC	ique number is prov l'assessment practit org.za listing all sens name has been with SANBI will release th	rided in the ioner (EAP) itive specie
Where only screening re or specialist with their ur species may species nam	a sensitive port and a is required hique ident be prone t e after the	plant unique numb n assessment is requ to email SANBI at <u>e</u> tifiers for which info to illegal harvesting details of the EAP o	er or sensitive animal un uired, the environmenta iadatarequests@sanbi.c rmation is required. The and must be protected. I or specialist have been do	ique number is prov l'assessment practit org.za listing all sens name has been with SANBI will release th	rided in the ioner (EAP) itive specie
Where only screening re or specialist with their ur species may	a sensitive port and a is required hique ident be prone t e after the	plant unique numb n assessment is requ to email SANBI at <u>e</u> tifiers for which info to illegal harvesting i	er or sensitive animal un uired, the environmenta iadatarequests@sanbi.c rmation is required. The and must be protected. 1	ique number is prov l assessment practit org.za listing all sens name has been with SANBI will release th ocumented.	rided in the ioner (EAP) itive specie
Where only screening re or specialist with their ur species may species nam	a sensitive port and a is required nique ident be prone t e after the ensitivity	plant unique numb n assessment is requ to email SANBI at <u>e</u> tifiers for which info to illegal harvesting details of the EAP o	er or sensitive animal un uired, the environmenta iadatarequests@sanbi.co rmation is required. The and must be protected. The or specialist have been do Medium sensitivity	ique number is prov l assessment practit org.za listing all sens name has been with SANBI will release th ocumented.	rided in the ioner (EAP) itive specie
Where only screening re or specialist with their ur species may species nam	a sensitive port and a is required nique ident be prone t e after the ensitivity	plant unique number n assessment is requ to email SANBI at <u>e</u> tifiers for which info to illegal harvesting details of the EAP of High sensitivity	er or sensitive animal un uired, the environmenta iadatarequests@sanbi.co rmation is required. The and must be protected. The or specialist have been do Medium sensitivity	ique number is prov l assessment practit org.za listing all sens name has been with SANBI will release th ocumented.	rided in the ioner (EAP) itive specie
Where only screening re or specialist with their ur species may species nam	a sensitive port and a is required nique ident be prone t e after the ensitivity eatures:	plant unique numbe n assessment is requ to email SANBI at <u>e</u> ifiers for which info to illegal harvesting a details of the EAP o High sensitivity	er or sensitive animal un uired, the environmenta iadatarequests@sanbi.co rmation is required. The and must be protected. The or specialist have been do Medium sensitivity	ique number is prov l assessment practit org.za listing all sens name has been with SANBI will release th ocumented.	rided in the ioner (EAP) itive specie

Figure 1: The National Web-Based Environmental Screening Tool map of the project site, indicating sensitivities for the Terrestrial Animal Species theme. The Medium sensitivity classification is linked to two mammals, Spotted-necked Otter *Hydrictis maculicollis* and Makwassie Musk Shrew *Crocidura maquassiensis*

16.1 Avifauna

A total of 268 species could potentially occur within the broader area where the project is located (see Appendix E). Of these, 97 are classified as priority species for solar developments. Of the 97 priority species, 37 have a medium to very high probability of occurring in the development site. Of the 37 priority species with a medium to high probability of occurrence, six were recorded during the site survey. No regional Red Data species were recorded during the site survey.

16.2 Receiving environment

The proposed study area is situated approximately 18,5 km north-west of the town of Klerksdorp, in the North-West Province. It is located in the Grassland Biome, in the Dry Highveld Grassland Bioregion and is situated in area that is made up of a mix of grassland and thorny woodland. The habitat is quite variable and consists of fallow fields (recovering grassland), natural grassland, shrub- and woodland, some wetland and pans, and some agricultural and industrial activities. Mucina & Rutherford (2006) classifies the area as mix between Vaal-Vet Sandy Grassland (an Endangered vegetation type) and Klerksdorp Thornveld.

There is riparian zone, the Jagspruit river and its floodplain and wetlands, in the north of the study area. The area is also scattered with a few artificial wetlands, pans, and round cement dams. The eastern half of the study area is mainly woodland and scattered grassland interspersed with some industrial and agricultural activities. The western half is mainly fallow fields (old lands), grassland and agriculture.

The Klerksdorp area has a semi-arid climate (according to the Köppen-Geiger climate classification), with warm to hot summers and cool, dry winters. The average annual precipitation is 482 mm, with most of the rainfall occurring during summer. It should be noted that photos from the field survey were taken in the rainy season (i.e., summer).

The following distinct habitat features are present in the study area:

- Grassland
- Old Lands (recovering grassland)
- Woodland
- Rivers and Wetlands
- Pans and Dams
- Agriculture
- Industrial

3.1.1 Grassland

SABAP1 recognises six primary vegetation divisions within South Africa, namely (1) Fynbos (2) Succulent Karoo (3) Nama Karoo (4) Grassland (5) Savanna and (6) Forest (Harrison *et al.* 1997). The criteria used by the authors to amalgamate botanically defined vegetation units, or to keep them separate were (1) the existence of clear differences in vegetation structure, likely to be relevant to birds, and (2) the results of published community studies on bird/vegetation associations. It is important to note that no new vegetation unit boundaries were created, with use being made only of previously published data.

Using this classification system, the natural vegetation in the study area is classified as Grassland. Grassland is dominated by grasses, with geophytes and herbs also well represented. Grasslands are maintained by a combination of relatively high summer rainfall, frequent fires, frost, and grazing, which prevent the presence of shrubs and trees (see **Figures 1 and 2**). But much of the Grassland Biome has been transformed and is under threat from crop farming, urbanization, afforestation, and bush encroachment.

Figure 9: An area of natural grassland within the study area.

Figure 10: Another example of natural grassland habitat in the study area.

The following priority species with a high or medium likelihood of occurrence could use Grassland habitat in the study area:

- African Sacred Ibis
- Amur Falcon
- Black-headed Heron
- Blacksmith Lapwing
- Black-winged Kite
- Cloud Cisticola
- Common Buzzard

- Egyptian Goose
- Glossy Ibis
- Lesser Kestrel
- Pied Starling
- South African Cliff Swallow
- Western Barn Owl
- Western Cattle Egret

3.1.2 Old Lands (Recovering Grassland)

In the western section of the study area there are tracts of fallow fields or old lands. These areas were used for crop farming in the past but have been left to return to semi-natural grasslands or grazing pastures (see **Figures 3 and 4**).

Figure 11: Old lands in the study area.

Figure 12: Another example of old lands (recovering grassland).

The following priority species with a high or medium likelihood of occurrence could use old lands (recovering grassland) in the study area:

- African Sacred Ibis
- Amur Falcon
- Black-headed Heron
- Blacksmith Lapwing
- Black-winged Kite
- Cloud Cisticola
- Common Buzzard
- Egyptian Goose
- Lesser Kestrel
- Pied Starling
- South African Cliff Swallow
- Spur-winged Goose
- Western Barn Owl
- Western Cattle Egret

3.1.3 Woodland

The eastern half of the study area is mainly woodland and thornveld. Woodlands can be important nesting areas for avian species. The woodland areas consist of mainly fine-leaved, semi-deciduous *Vachellia*-dominated habitat (see **Figures 5 and 6**).

Figure 13: Thick woodland habitat in the study area.

Figure 14: Vachellia-dominated woodland.

The following priority species with a high or medium likelihood of occurrence could use woodland habitat in the study area:

- Black-winged Kite
- Common Buzzard
- Fiscal Flycatcher
- Karoo Thrush
- Western Barn Owl

3.1.4 Rivers and Wetlands

Rivers and wetlands are important habitats, especially for priority species. There are a few scattered wetlands across the study area. These provide habitat for waterfowl, waders and reedbed dwellers such as rails and crakes. There is riparian zone, the Jagspruit river and its floodplain and wetlands, in the north of the study area (see **Figures 7 and 8**).

Figure 15: Wetland habitat in the study area.

Figure 16: Wetland along the fringes of a pan in the study area.

The following priority species with a high or medium likelihood of occurrence could use riverine and wetland habitat in the study area:

- African Sacred Ibis
- African Spoonbill
- Black-headed Heron
- Blacksmith Lapwing
- Black-winged Stilt
- Cape Shoveler
- Cape Teal
- Egyptian Goose
- Glossy Ibis
- Grey Heron
- Kittlitz's Plover
- Little Stint
- Marsh Sandpiper
- Red-billed Teal
- Reed Cormorant
- Ruff
- South African Shelduck
- Southern Pochard

- Spur-winged Goose
- Three-banded Plover
- Western Cattle Egret
- Whiskered Tern
- White-breasted Cormorant
- White-faced Whistling Duck
- Wood Sandpiper
- Yellow-billed Duck

3.2.5 Pans, dams and water reservoirs

Surface water is of importance to avifauna in this semi-arid area. The study area contains seasonal pans and some artificial impoundments (ground dams and water reservoirs) which provide habitat for waterbirds (see **Figures 9, 10, and 11**).

Figure 17: A dam located in the western corner of the study area.

Figure 18: Seasonal pan in the study area.

Figure 19: A water reservoir with a cement dam in the study area.

The following priority species with a high or medium likelihood of occurrence could use pans and dams in the study area:

- African Sacred Ibis
- African Spoonbill
- Red-knobbed Coot
- Blacksmith Lapwing
- Black-winged Stilt
- Cape Shoveler
- Cape Teal
- Egyptian Goose
- Grey Heron
- Little Grebe
- Common Buzzard
- Kittlitz's Plover
- Little Stint
- Marsh Sandpiper
- Red-billed Teal
- Reed Cormorant
- South African Shelduck
- Southern Pochard
- Spur-winged Goose
- Three-banded Plover
- Whiskered Tern
- White-breasted Cormorant
- White-faced Whistling Duck
- Wood Sandpiper
- Yellow-billed Duck

3.2.6 Agriculture

There is some agricultural activity within the study area (see **Figure 12**). The fields are mainly used for crop production. Certain bird species have adapted to, and some even thrive, in agricultural habitats.

Figure 20: Ploughed field in study area.

The following species with a high or medium likelihood of occurrence could use agricultural lands in the study area:

- African Sacred Ibis
- Amur Falcon
- Blacksmith Lapwing
- Egyptian Goose
- Black-winged Kite
- Common Buzzard
- Lesser Kestrel
- Pied Starling
- Spur-winged Goose
- Western Cattle Egret
- Western Barn Owl

3.2.7 Industrial

There are some industrial developments and heavily transformed habitats within the study area. Remnants of old mining quarries, extraction pits and stockpiles are still present on site as well as an electrical substation (see **Figures 13 and 14**). There are also some areas with alien trees and residential homes (see **Figure 15**).

Figure 21: Electrical substation located on the eastern edge of the study area.

Figure 22: Remnants of an old mining stockpile in the study area.

Figure 23: Alien trees, Eucalyptus, in the study area.

The following priority species with a high or medium likelihood of occurrence could use industrial habitat (including alien trees) in the study area:

- Amur Falcon
- Black-headed Heron
- Black-winged Kite
- Common Buzzard
- Fiscal Flycatcher
- Lesser Kestrel
- Karoo Thrush
- Western Barn Owl

4. Environmental sensitivities

The following environmental sensitivities have been identified to date:

• Pans, dams and water reservoirs: Very High sensitivity (Solar panel exclusion zone)

Included are areas within 100m of waterbodies and wetlands. Wetlands and waterbodies are crucially important for priority avifauna, particularly waterbirds, and many non-priority species. It is therefore important to leave open space for birds to access and leave the waterbodies unhindered.

• Rivers and wetlands Very High sensitivity (Solar panel exclusion zone):

Included are areas within 100m of rivers and drainage lines. These areas are important for priority avifauna and many non-priority species. It is important to leave open space for birds to access and leave the riverine areas unhindered.

Please see Appendix B for a map indicating the buffer zones identified to date.

5. Conclusions

Based on the field survey to date, the classification of **Low** sensitivity for avifauna in the screening tool is confirmed for the proposed study area.

Species name	Scientific name	Priority species recorded during field
		survey
Abdim's Stork	Ciconia abdimii	
African Black Duck	Anas sparsa	
African Darter	Anhinga rufa	
African Fish Eagle	Haliaeetus vocifer	
African Jacana	Actophilornis africanus	
African Rail	Rallus caerulescens	
African Sacred Ibis	Threskiornis aethiopicus	
African Snipe	Gallinago nigripennis	
African Spoonbill	Platalea alba	
African Swamphen	Porphyrio madagascariensis	
Amur Falcon	Falco amurensis	X
Black Crake	Zapornia flavirostra	
Black Heron	Egretta ardesiaca	
Black-chested Snake Eagle	Circaetus pectoralis	
Black-crowned Night Heron	Nycticorax nycticorax	
Black-headed Heron	Ardea melanocephala	
Blacksmith Lapwing	Vanellus armatus	
Black-winged Kite	Elanus caeruleus	X
Black-winged Stilt	Himantopus himantopus	
Blue-billed Teal	Spatula hottentota	
Booted Eagle	Hieraaetus pennatus	
Cape Shoveler	Spatula smithii	
Cape Teal	Anas capensis	
Cape White-eye	Zosterops virens	
Cloud Cisticola	Cisticola textrix	
Common Buzzard	Buteo buteo	
Common Greenshank	Tringa nebularia	
Common Moorhen	Gallinula chloropus	
Common Ringed Plover	, Charadrius hiaticula	
Common Sandpiper	Actitis hypoleucos	
Curlew Sandpiper	Calidris ferruginea	
Egyptian Goose	Alopochen aegyptiaca	
European Honey-buzzard	Pernis apivorus	
European Roller	Coracias garrulus	
Fairy Flycatcher	Stenostira scita	
Fiscal Flycatcher	Melaenornis silens	
Fulvous Whistling Duck	Dendrocygna bicolor	
Gabar Goshawk	Micronisus gabar	
Glossy Ibis	Plegadis falcinellus	
Goliath Heron	Ardea goliath	
Great Crested Grebe	Podiceps cristatus	
Great Egret	Ardea alba	
Greater Flamingo	Phoenicopterus roseus	
Greater Kestrel	Falco rupicoloides	
Grey Heron	Ardea cinerea	
Grey Plover	Pluvialis squatarola	
GIEY FIOVEI	riuvialis squatarvia	

HamerkopScopus unIntermediate EgretArdea interJackal BuzzardButeo rufoKaroo ThrushTurdus smKittlitz's PloverCharadriusLanner FalconFalco biarrLesser FlamingoPhoenicom	rmedia fuscus ithi s pecuarius nicus
Jackal BuzzardButeo rufoKaroo ThrushTurdus smKittlitz's PloverCharadriusLanner FalconFalco biarr	fuscus ithi s pecuarius nicus
Karoo ThrushTurdus smKittlitz's PloverCharadriusLanner FalconFalco biarr	ithi s pecuarius nicus
Kittlitz's PloverCharadriusLanner FalconFalco biarr	s pecuarius nicus
Lanner Falcon Falco biarr	nicus
Lanner Falcon Falco biarr	nicus
Lossor Elamingo	- to - mile - m
LESSEL FIAITIINGO	ialas minor
Lesser Kestrel Falco naur	manni X
Lesser Moorhen Paragalling	ula angulata
Little Egret Egretta ga	
	us ruficollis
Little Stint Calidris mi	
Maccoa Duck Oxyura ma	
Malachite Kingfisher Corythorni	
Marsh Owl Asio caper	
Marsh Sandpiper Tringa stag	
Melodious Lark Mirafra che	
Pale Chanting Goshawk Melierax c	
Pearl-spotted Owlet Glaucidium	
· · · · · · · · · · · · · · · · · · ·	tra avosetta
Pied Kingfisher Ceryle rud	
Pied Starling Lamprotor	
Purple HeronArdea purple	
Red-billed Teal Anas eryth	
Red-chested Flufftail Sarothrura	
Red-knobbed Coot Fulica crist	
Reed Cormorant Microcarbo	
I	
Ruff Calidris pu	
	serpentarius
	don spilodera X
South African Shelduck Tadorna ca	
	nrophthalma
Spotted Eagle-Owl Bubo africa	
	rus gambensis
Squacco Heron Ardeola ra	
Three-banded Plover Charadrius	
Verreaux's Eagle Aquila veri	reauxii
Western Barn Owl Tyto alba	
Western Cattle Egret Bubulcus i	
Whiskered Tern Chlidonias	-
White Stork Ciconia cic	
	nis leuconotus
	prax lucidus
	na viduata
	leucopterus
Wood Sandpiper Tringa glai	
Yellow-billed Duck Anas undu	
Yellow-billed Kite Milvus aeg	
Yellow-billed Stork Mycteria ib	pis

Figure 24: Buffer zones (solar panel exclusion zones) around sensitive habitats indicated in red.