

AVIFAUNA IMAPCT ASSESSMENT FOR THE PROPOSED MIDAS BATTERY ENERGY STORAGE SYSTEMS (BESS) AND OHL PROJECT

С

2/5/2024

Prepared by: The Biodiversity Company Cell: +27 81 319 1225 Fax: +27 86 527 1965 info@thebiodiversitycompany.com www.thebiodiversitycompany.com

Report Name	AVIFAUNA IMAPCT ASSESSMENT FOR THE PROPOSED MIDAS BATTERY ENERGY STORAGE SYSTEMS (BESS) AND OHL PROJECT			
Specialist Theme	Avifauna Theme			
Project Reference	Midas BESS & OHL Avifa	auna Assessment		
Report Version	Draft 1 / 2/5/2	2024		
Environmental Assessment Practitioner	Cape EAPrac			
Fieldwork	Ernest Porter			
Report Writer	Sam van Zwieten	Re		
Reviewer	Ryno Kemp (SACNASP 117462/17)	Pheny		
Reviewer	Andrew Husted (SACNASP 400213/11)	Hant		
Declaration	The Biodiversity Company and its associates operate as independent consultants under the auspice of the South African Council for Natural Scientific Professions. We declare that we have no affiliation with or vested financial interests in the proponent, other than for work performed under the Environmental Impact Assessment Regulations, 2017. We have no conflicting interests in the undertaking of this activity and have no interests in secondary developments resulting from the authorisation of this project. We have no vested interest in the project, other than to provide a professional service within the constraints of the project (timing, time and budget) based on the principals of science.			

Table of Contents

1	Introduction	6
1.1	Background	6
1.2	Project Description	6
1.3	Scope of Work	8
1.4	Assumptions and Limitations	9
1.5	Key Legislative Requirements	9
2	Fieldwork	9
2.1	Avifauna Field Assessment	9
3	Results & Discussion	11
3.1	Ecologically Important Landscape Features	11
3.1.1	Red List of Ecosystems	11
3.1.2	Ecosystem Protection Level	12
3.1.3	Critical Biodiversity Areas and Ecological Support Areas	13
3.1.4	National Protected Area Expansion Strategy	14
3.1.5	Protected Areas Error! Bookmark no	ot defined.
3.1.6	Important Bird and Biodiversity Area	15
3.1.7	South African Inventory of Inland Aquatic Ecosystems	16
3.1.8	National Freshwater Ecosystem Priority Area Status	17
3.1.9	Renewable Energy Database	18
3.1.10	Strategic Transmission Corridors	19
3.1.11	Coordinated Waterbird Counts (CWAC)	20
3.1.12	Coordinated Avifaunal Roadcount (CAR)	21
3.1.13	Gauteng Ridges	22
3.2	Avifauna Expected Species	23
3.3	Fieldwork Findings	25
3.3.1	Species List of Field Survey	25
3.3.2	Flight and Nest Analysis	27
3.4	Habitat Assessment	28
3.4.1	Agriculture	28
3.4.2	Grassland	29
3.4.3	Transformed	
3.5	Site Ecological Importance	31

3.5.1	Desktop Ecological Senstivity	
3.5.2	Screening Tool Comparison	35
4	Impact Assessment	35
4.1	Current Impacts to Biodiversity	35
4.2	Alternatives Considered	
4.3	Loss of Irreplaceable Resources	
4.4	Quantitative Impact Assessment	37
4.4.1	Construction Phase	37
4.4.2	Operation Phase	40
4.4.3	Construction Phase	
4.4.4	Cumulative Impacts	
5	Avifauna Impact Management Actions	
6	Monitoring	50
7	Conclusion	50
7.1	Impact Statement	
7.2	Specialist Opinion	50
8	References	51
9	Appendix Items	53
9.1	Appendix A: Methodology	53
9.1.1	Desktop Dataset Assessment	53
9.1.2	Avifauna Survey	54
9.2	Appendix B: Site Ecological Importance	55
9.3	Appendix C: Impact Assessment Significance Rating	
9.4	Appendix D: Expected Avifaunal Species	
9.5	Appendix E: Point Count Data	
9.6	Appendix F: Incidental Records	68
9.7	Appendix G: Specialist Declaration of Independence	69
9.8	Appendix H – Specialist CVs	70

List of Tables

Table 1-1	A list of key legislative requirements9
Table 3-1	Summary of relevance of the proposed project to ecologically important landscape features
Table 3-2	Threatened avifauna species that are expected to occur within the PAOI. EN = Endangered, LC = Least Concern, NT = Near Threatened and VU = Vulnerable23
Table 3-3	Summary of Priority Species recorded within and around the proposed development.
Table 3-4	Relative abundance and frequency of occurrence of dominant avifauna species recorded during the standardised point counts within and around the proposed development during the field survey
Table 3-5	Summary of habitat types delineated within field assessment area
Table 3-6	Summary of the screening tool vs specialist-assigned sensitivities
Table 4-1	Assessment of significance of potential impacts on avifauna associated with the construction phase
Table 4-2	Assessment of significance of potential impacts on avifauna associated with the operational phase
Table 4-3	Assessment of significance of potential impacts on avifauna associated with the decommissioning phase
Table 4-4	The cumulative impacts considered for avifauna45
Table 4-5	Cumulative Impacts to avifauna associated with the proposed project45
Table 5-1	Summary of management outcomes pertaining to impacts on avifauna and their habitats
Table 9-1	Summary of Conservation Importance (CI) criteria55
Table 9-2	Summary of Functional Integrity (FI) criteria55
Table 9-3	Matrix used to derive Biodiversity Importance (BI) from Functional Integrity (FI) and Conservation Importance (CI)
Table 9-4	Summary of Resource Resilience (RR) criteria
Table 9-5	Matrix used to derive Site Ecological Importance (SEI) from Receptor Resilience (RR) and Biodiversity Importance (BI)
Table 9-6	Guidelines for interpreting Site Ecological Importance (SEI) in the context of the proposed development activities

List of Figures

Figure 1-1	Proposed location of the project area in relation to the nearby towns7
Figure 1-2	Project area of influence
Figure 2-1	Map illustrating the point count locations10
Figure 3-1	Map illustrating the ecosystem threat status associated with the proposed development
Figure 3-2	Map illustrating the ecosystem protection level associated with the PAOI
Figure 3-3	Map illustrating the biodiversity spatial plan in relation to the PAOI14
Figure 3-4	The PAOI in relation to the National Protected Area Expansion Strategy15
Figure 3-5	Map illustrating the location of protected areas proximal to the PAOIError! Bookmark not defined.
Figure 3-6	The PAOI in relation to the nearest IBAs16
Figure 3-7	Map illustrating ecosystem threat status of rivers and wetland ecosystems in relation to the PAOI
Figure 3-8	The PAOI in relation to the National Freshwater Ecosystem Priority Areas18
Figure 3-9	The PAOI in relation to other Renewable energy projects
Figure 3-10	Map illustrating the PAOI in relation to the strategic transmission corridor20
Figure 3-11	The PAOI in relation to the CWAC site21
Figure 3-12	The CAR routes in relation to the PAOI
Figure 3-13	Map illustrating Gauteng ridges in relation to PAOI
Figure 3-14	Column plot illustrating the proportion of each Functional Feeding Guild to the total abundance. Avifaunal trophic guilds – CGD, Carnivore Ground Diurnal; CGN, Carnivore Ground Nocturnal, CAN, Carnivore Air Nocturnal, CWD, Carnivore Water Diurnal; FFD, Frugivore Foliage Diurnal; GGD, Granivore Ground Diurnal; HWD, Herbivore Water Diurnal; IAD, Invertivore Air Diurnal; IGD, Insectivore Ground Diurnal; OMD, Omnivore Multiple Diurnal; IAN, Invertivore Air Nocturnal
Figure 3-15	Habitats identified within the assessment areas
Figure 3-16	Agricultural habitat29
Figure 3-17	Grassland habitat
Figure 3-18	Transformed habitat
Figure 3-19	Terrestrial Biodiversity Theme Sensitivity
Figure 3-20	Animal Species Theme Sensitivity
Figure 3-21	Site ecological importance, with mitigation measures applied35
Figure 4-1	Photograph illustrating current negative impacts associated with the PAOI: A) Powerlines and agricultural land, B) Substation infrastructure, and C) Livestock. 36

Figure 4-2 Cumulative habitat loss in 30 km surrounding the PAOI45

1 Introduction

1.1 Background

The Biodiversity Company was appointed to undertake an avifauna impact assessment for the proposed Midas Battery Energy Storage Systems (BESS) and Overhead Line project. The project area is located near East Village, approximately 30 km south-west of Soweto, within the Rand West City Local Municipality, Westonaria District, Gauteng Province (Figure 1-1). The project area of interest (PAOI) consists of the project area provided, made up of the BESS, switching stations, temporary laydown, auxiliary buildings, grid corridor, the access road, and a 2 km buffer around the grid corridor due to it falling within a Power Corridor (Figure 1-2).

The approach was informed by the Environmental Impact Assessment Regulations. 2014 (GNR 326, 7 April 2017) of the National Environmental Management Act, 1998 (Act No. 107 of 1998) (NEMA). The approach has taken cognisance of the recently published Government Notices 320 (20 March 2020) in terms of NEMA, dated 20 March and 30 October 2020: "Procedures for the Assessment and Minimum Criteria for Reporting on Identified Environmental Themes in terms of Sections 24(5)(a) and (h) and 44 of the National Environmental Management Act, 1998, when applying for Environmental Authorisation" (Reporting Criteria).

This report, after taking into consideration the findings and recommendations provided by the specialist herein, should inform and guide the Environmental Assessment Practitioner (EAP) and regulatory authorities at a scoping level, enabling informed decision making.

1.2 **Project Description**

Midas BESS (Pty) Ltd is proposing the construction of the Midas Battery Energy Storage (BESS) Facility, located on Portion 10 of the Farm Uitval No. 280, approximately 18 km east of Carltonville in the Gauteng Province.

The Applicant is also proposing to upgrade the existing access road on Portion 8 and Portion 10 of the Farm Uitval No. 280; and to construct new 132kV grid connection infrastructure on Portion 10 of the Farm Uitval No. 280, Portion 22 of the Farm Driefontein No. 355, Portion 5 of the Farm Doornkloof No. 350, Portion 71 of the Farm Leeuwpoort 356, Portion 70 of the Farm Leeuwpoort 356, Portion 36 of the Farm Leeuwpoort 356, Portion 35 of the Farm Leeuwpoort 356, Portion 33 of the Farm Leeuwpoort 356 and Portion 28 of the Farm Driefontein 355.

The Midas BESS facility will have a total development footprint of up to approximately 15 ha and will have a maximum export capacity of 77 MW. The development area is situated within the Merafong City Local Municipality and the Rand West City Local Municipality. The site is accessible via existing gravel roads from the R501 and N12.

The proposed Midas BESS will cover approximately 15 ha and will include the following infrastructure:

- Solid State Battery Energy Storage System (BESS) (up to 10 ha);
- Inverters and transformers;
- Site and internal access roads (up to 8m wide);
- Operation and Maintenance buildings including a gate house and security building, control centre, offices, warehouses and workshops for storage and maintenance (up to 1 ha);
- Laydown areas (3 ha temporary and 1 ha permanent);

- A 132 kV facility substation (up to 1 ha); and
- 33 kV cabling between the project components and the facility substation.

The project will also include Grid connection infrastructure consisting of:

- A 132 kV Eskom Switching Station (up to1 ha); and
- 132 kV powerline (up to 4 km long) connecting the Eskom switching station to the Midas Main Transmission Substation (a grid connection corridor of 100m wide will be assessed to allow for environmental sensitivities and/or micro-siting).

The Grid connection infrastructure, although assessed cumulatively with the BESS, will be subject to a separate environmental application process administered by the provincial authority.

Figure 1-1 Proposed location of the project area in relation to the nearby towns

Figure 1-2 Project area of influence

1.3 Scope of Work

The assessment was achieved according to the above-mentioned legislation and the best-practice guidelines and principles for Avifaunal Impact Assessments within the context of BESS and OHLs as outlined by BirdLife South Africa (2017).

- The scope of the Avifaunal Impact Assessment included the following:
- Desktop assessment to identify the relevant ecologically important geographical features within the Project Area of Influence (PAOI) and surrounding landscape;
- Desktop assessment to compile an expected species list and possible avifauna Species of Conservation Concern (SCC) that potentially occur within the PAOI;
- Field work to determine the density and composition of species in the PAOI;
- Description of the baseline avifauna species and Functional Feeding Guild (FFG) composition assemblage within the PAOI;
- Delineate site sensitivity or sensitivities i.e., the Site Ecological Importance (SEI) within the context of the avifauna species assemblage of the PAOI;
- Identify the manner that the proposed development impacts the avifauna community and evaluate the level of risk of these potential impacts; and
- Provide mitigation measures to prevent or reduce the possible impacts.

1.4 Assumptions and Limitations

The following assumptions and limitations are applicable for this assessment:

- The PAOI was based on the project footprint area as provided by the client. Any alterations to the area and/or missing GIS information pertaining to the assessment area would have affected the area surveyed and hence the results of this assessment;
- One avifaunal field survey was completed on the 31st of January 2024. This assessment is deemed sufficient and no additional field assessments are required;
- Whilst every effort was made to cover as much of the PAOI as possible it is possible that some species that are present within the PAOI were not recorded during the field investigations due to their secretive behaviour; and
- The GPS used in the assessment has an accuracy of 5 m and consequently any spatial features delineated may be offset by up to 5 m.

1.5 Key Legislative Requirements

The legislation, policies and guidelines listed below in Table 1-1 are applicable to the current project. The list below, although extensive, may not be complete and other legislation, policies and guidelines may apply in addition to those listed below.

Region	Legislation / Guideline Comment			
	NEMA	Environmental Impact Assessment Regulations. 2014 (GNR 326, 7 April 2017), Appendix 6 requirements		
	The National Environmental Management: Biodiversity Act (Act No. 10 of 2004) (NEMBA), Threatened or Protected Species Regulations	The protection of species and ecosystems that warran protection		
	Assessment Protocol (March 2020)	The minimum criteria for reporting.		
National	Assessment Protocol (October 2020)	Protocol for the specialist assessment and minimum report content requirements.		
	NEMWA;	The regulation of waste management to protect the environment.		
	NWA	The regulation of water uses.		
	GN 1003 of GG 43726 of 18 Sept 2020	The regulation and management of alien invasive species.		
	Conservation of Agricultural Resources Act, 1983 (Act 43 of 1983) (CARA)	To provide for control over the utilisation of the natural agricultural resources, including the vegetation and the combating of weeds and invader plants.		
	GDARD Requirements for Biodiversity Assessments (Version 3, 2014a)			
Provincial	Gauteng Department of Agriculture and Rural Development (GDARD): Checklist for Biodiversity Assessments			
	GDARD Mining and Environmental Impact Guide			

Table 1-1A list of key legislative requirements

2 Fieldwork

2.1 Avifauna Field Assessment

One avifaunal field survey was completed on the 31st of January 2024. Sampling consisted of standardised point counts as well as random diurnal incidental surveys. Standardised point counts (Buckland *et al*, 1993) were conducted to gather data on the species composition and relative abundance of species within the broad habitat types identified. The standardised point count technique was utilised as it was demonstrated to outperform line routes (Cumming & Henry, 2019). Each point

Avifauna Theme Midas BESS & OHL Avifauna Assessment

count was run over a 10 minute period. The horizontal detection limit was set at 150 m. At each point the observer would document the date, start time, and end time, habitat, numbers of each species, detection method (seen or heard), behaviour (perched or flying) and general notes on habitat and nesting suitability for conservation important species. To supplement the species inventory with cryptic and illusive species that may not be detected during the rigid point count protocol, diurnal and nocturnal incidental searches were conducted. This involved the opportunistic sampling of species between point count periods, random meandering and road cruising. Effort was made to cover all the different habitat types within the limits of time and access. Figure 2-1 shows the locations of the point counts conducted.

Figure 2-1 Map illustrating the point count locations

3 Results & Discussion

3.1 Ecologically Important Landscape Features

The GIS analysis pertaining to the relevance of the proposed project to ecologically important landscape features is summarised in Table 3-1.

Table 3-1Summary of relevance of the proposed project to ecologically important
landscape features

Desktop Information Considered	Relevant/Irrelevant	Section
Ecosystem Threat Status	Relevant – Overlaps with a "LC" Ecosystem (RLE, 2021).	3.1.1
Ecosystem Protection Level	Relevant - Overlaps with a 'Poorly Protected' Ecosystem.	3.1.2
Provincial Conservation Plan	Relevant – Overlaps with CBAs and ESAs.	3.1.3
National Protected Areas Expansion Strategy	Relevant – Overlaps with Priority Focus Areas.	3.1.4
SAPAD & SACAD	Irrelevant – Does not overlap with any SAPAD or SACAD areas, with nearest SAPAD, the Tweefontein Private Nature Reserve, being 20 km away and the nearest SACAD, the Magaliesberg Biosphere Reserve, is over 30 km away.	-
Important Bird and Biodiversity Areas	Irrelevant – The nearest IBA, the Magaliesberg, is 33km away.	3.1.5Error! Reference source not found.
South African Inventory of Inland Aquatic Ecosystems (SAIIAE)	Relevant – Overlaps with a CR and LC wetlands.	3.1.6
National Freshwater Priority Area	Relevant - Overlaps with non-priority wetlands.	3.1.7
Renewable Energy Development Zones	Irrelevant – Does not overlap with any REDZ.s	-
Renewable Energy Database	Relevant – Overlaps with an approved REEA.	3.1.8
Strategic Transmission Corridors (EGI)	Relevant – Overlaps with the International Corridor	3.1.9
Coordinated Water Bird Count	Irrelevant – Project area does not overlap with any CWAC sites	3.1.10
Coordinated Avifaunal Road Count	Irrelevant - Project area does not overlap with any CAR routes	3.1.11
Gauteng Ridges	Relevant – The PAOI overlaps with Class 1 and 2 Ridges	3.1.12

3.1.1 Red List of Ecosystems

The Ecosystem Threat Status is an indicator of an ecosystem's wellbeing, based on the level of change in structure, function or composition. Ecosystem types are categorised as Critically Endangered (CR), Endangered (EN), Vulnerable (VU), Near Threatened (NT) or Least Concern (LC), based on the proportion of the original extent of each ecosystem type that remains in good ecological condition. According to the spatial dataset the proposed development overlaps with a LC ecosystem (Figure 3-1).

Figure 3-1 Map illustrating the ecosystem threat status associated with the proposed development.

3.1.2 Ecosystem Protection Level

This is an indicator of the extent to which ecosystems are adequately protected or under-protected. Ecosystem types are categorised as Well Protected (WP), Moderately Protected (MP), Poorly Protected (PP), or Not Protected (NP), based on the proportion of the biodiversity target for each ecosystem type that is included within one or more protected areas. NP, PP or MP ecosystem types are collectively referred to as under-protected ecosystems. The proposed project overlaps with a PP ecosystem (Figure 3-2).

Figure 3-2 Map illustrating the ecosystem protection level associated with the PAOI

3.1.3 Critical Biodiversity Areas and Ecological Support Areas

The Gauteng Conservation Plan (Version 3.3) (GDARD, 2014b) classified areas within the province on the basis of its contribution to reach the conservation targets within the province. These areas are classified as Critical Biodiversity Areas (CBAs) and Ecological Support Areas (ESAs) to ensure sustainability in the long term. The CBAs are classified as either 'Irreplaceable' (must be conserved), or 'Important'.

Critical Biodiversity Areas (CBAs) are terrestrial and aquatic areas of the landscape that need to be maintained in a natural or near-natural state to ensure the continued existence and functioning of species and ecosystems and the delivery of ecosystem services. Thus, if these areas are not maintained in a natural or near natural state then biodiversity targets cannot be met. According to the GBSP the PAOI falls across areas classified as ESAs and CBAs (Figure 3-3).

Figure 3-3 Map illustrating the biodiversity spatial plan in relation to the PAOI

3.1.4 National Protected Area Expansion Strategy

National Protected Area Expansion Strategy 2018 (NPAES) areas were identified through a systematic biodiversity planning process. They present the best opportunities for meeting the ecosystem-specific protected area targets set in the NPAES and were designed with a strong emphasis on climate change resilience and requirements for protecting freshwater ecosystems. These areas should not be seen as future boundaries of protected areas, as in many cases only a portion of a particular focus area would be required to meet the protected area targets set in the NPAES. They are also not a replacement for fine scale planning which may identify a range of different priority sites based on local requirements, constraints and opportunities (NPAES, 2018).

The PAOI overlaps with a Priority focus area (Figure 3-4).

3.1.5 Important Bird and Biodiversity Area

Important Bird & Biodiversity Areas (IBAs) are the sites of international significance for the conservation of the world's birds and other conservation significant species as identified by BirdLife International. These sites are also all Key Biodiversity Areas; sites that contribute significantly to the global persistence of biodiversity (Birdlife South Africa, 2017).

According to Birdlife South Africa (2017), the selection of IBAs is achieved through the application of quantitative ornithological criteria, grounded in up-to-date knowledge of the sizes and trends of bird populations. The criteria ensure that the sites selected as IBAs have true significance for the international conservation of bird populations and provide a common currency that all IBAs adhere to, thus creating consistency among, and enabling comparability between, sites at national, continental and global levels. Figure 3-5 shows that the PAOI is located 33 km from the nearest IBA, the Magaliesberg IBA.

Figure 3-5 The PAOI in relation to the nearest IBAs

3.1.6 South African Inventory of Inland Aquatic Ecosystems

The South African Inventory of Inland Aquatic Ecosystems (SAIIAE) was released with the NBA in 2018. Ecosystem threat status (ETS) of river and wetland ecosystem types are based on the extent to which each river ecosystem type had been altered from its natural condition. Ecosystem types are categorised as CR, EN, VU or LT, with CR, EN and VU ecosystem types collectively referred to as 'threatened' (Van Deventer *et al.*, 2019; Skowno *et al.*, 2019). The PAOI overlaps with CR and LC wetlands and is in close proximity with a CR and EN river, the Loopspruit (Figure 3-6).

Figure 3-6 Map illustrating ecosystem threat status of rivers and wetland ecosystems in relation to the PAOI

3.1.7 National Freshwater Ecosystem Priority Area Status

In an attempt to better conserve aquatic ecosystems, South Africa has categorised its river systems according to set ecological criteria (i.e., ecosystem representation, water yield, connectivity, unique features, and threatened taxa) to identify Freshwater Ecosystem Priority Areas (FEPAs) (Driver *et al.*, 2011). The FEPAs are intended to be conservation support tools and envisioned to guide the effective implementation of measures to achieve the National Environment Management Biodiversity Act's (NEM:BA) biodiversity goals (Nel *et al.*, 2011).

Figure 3-7 shows that the PAOI overlaps with non-priority wetlands and is in close proximity to an Upstream Management Area FEPA river.

3.1.8 Renewable Energy Database

The Renewable Energy Database (http://egis.environment.gov.za/), shows that there is a project in the vicinity the project footprint and also overlaps with an already approved area (Figure 3-8). This increases the overall impact on the avifauna in the area.

Avifauna Theme Midas BESS & OHL Avifauna Assessment

3.1.9 Strategic Transmission Corridors

On the 16 February 2018 minister Edna Molewa published Government Notice No. 113 in Government Gazette No. 41445 which identified 5 strategic transmission corridors important for the planning of electricity transmission and distribution infrastructure as well as procedure to be followed when applying for environmental authorisation for electricity transmission and distribution expansion when occurring in these corridors.

On 29 April 2021, Minister Barbara Dallas Creecy published Government Notice No. 383 in Government Gazette No. 44504, which expanded the eastern and western transmission corridors and gave notice of the applicability of the application procedures identified in Government Notice No. 113, to these expanded corridors. More information on this can be obtained from https://egis.environment.gov.za/egi.

Figure 3-9 shows the PAOI is within the Central Strategic Transmission Corridor.

Figure 3-9 Map illustrating the PAOI in relation to the strategic transmission corridor

3.1.10 Coordinated Waterbird Counts (CWAC)

The Animal demographic unit launched the Coordinated Waterbird Counts (CWAC) project in 1992 as part of South Africa's commitment to International waterbird conservation. Regular mid-summer and mid-winter censuses are done to determine the various features of water birds, including population size, how waterbirds utilise water sources and determining the health of wetlands. For a full description of CWAC please refer to http://cwac.birdmap.africa/about.php. Figure 3-10 shows the PAOI is 17 km from the nearest CWAC site, being the Abe Bailey Nature Reserve: Mooirivier Loop 1 CWAC site.

Figure 3-10 The PAOI in relation to the CWAC site

3.1.11 Coordinated Avifaunal Roadcount (CAR)

The ADU/Cape bird club pioneered avifaunal roadcount of larger birds in 1993 in South africa. Originally it was started to monitor the Blue Crane Anthropoides paradiseus and Denham's/Stanley's Bustard Neotis denhami. Today it has been expanded to the monitoring of 36 species of large terrestrial birds (cranes, bustards, korhaans, storks, Secretarybird and Southern Bald Ibis) along 350 fixed routes covering over 19 000 km. Twice a year, in midsummer (the last Saturday in January) and midwinter (the last Saturday in July), roadcounts are carried out using this standardised method. These counts are important for the conservation of these larger species that are under threat due to loss of habitat through changes in land use, increases in crop agriculture and human population densities, poisoning as well as man-made structures like power lines. With the prospect of wind and solar farms to increase the use of renewable energy sources monitoring of these species is most important (CAR, 2020). Figure 3-11 shows that the PAOI is approximately 9 km from the nearest routes.

Figure 3-11 The CAR routes in relation to the PAOI

3.1.12 Gauteng Ridges

The PAOI overlaps with a Class 1 and Class 2 of Gauteng's quartzite ridges, and with the project area overlapping with a Class 1 Ridge (Figure 3-12).

Figure 3-12 Map illustrating Gauteng ridges in relation to PAOI

3.2 Avifauna Expected Species

SABAP2 data indicate that 339 avifauna species are expected for the PAOI and surrounds. Of these, 18 are considered SCC. An additional bird species, the White-bellied Korhaan (*Eupodotis senegalensis*) was added due the results of the National Web-based Environmental Screening Tool Regulation 16(1)(v), resulting in a total of 19 SCC expected for the PAOI and surrounds (Table 3-2). The likelihood of occurrence within the POAI are included here.

Table 3-2	Threatened avifauna species that are expected to occur within the PAOI. EN =
	Endangered, LC = Least Concern, NT = Near Threatened and VU = Vulnerable

Common Name	Scientific Name	Regional*	Global⁺	Likelihood of occurrence
Abdim's Stork	Ciconia abdimii	NT	LC	Moderate
African Grass Owl	Tyto capensis	VU	LC	Moderate
African Marsh Harrier	Circus ranivorus	EN	LC	Low
Black Harrier	Circus maurus	EN	EN	Low
Black-winged Pratincole	Glareola nordmanni	NT	NT	Low
Cape Vulture	Gyps coprotheres	EN	VU	Low
Caspian Tern	Hydropogne caspia	VU	LC	Low
Curlew Sandpiper	Calidris ferruginea	LC	NT	Low
Greater Flamingo	Phoenicopterus roseus	NT	LC	Low
Half-collared Kingfisher	Alcedo semitorquata	NT	LC	Low

Avifauna Theme

Midas BESS & OHL Avifauna Assessment

Lanner Falcon	Falco biarmicus	VU	LC	Moderate
Lesser Flamingo	Phoeniconaias minor	NT	NT	Low
Maccoa Duck	Oxyura maccoa	NT	EN	Low
Pallid Harrier	Circus macrourus	NT	NT	Low
Red-footed Falcon	Falco vespertinus	NT	VU	Low
Secretarybird	Sagittarius serpentarius	VU	EN	Moderate
Sentinel Rock Thrush	Monticola explorator	LC	NT	Low
White-bellied Korhaan	Eupodotis senegalensis	VU	LC	Moderate
Yellow-billed Stork	Mycteria ibis	EN	LC	Low

*(Taylor et al. 2015), + (IUCN 2021)

Ciconia abdimii (Abdim's Stork) is listed as NT on a local scale and the species is known to be found in open grassland and savanna woodland often near water but also in semi-arid areas, gathering beside pools and water-holes. They tend to roost in trees or cliffs (IUCN, 2017).

Tyto capensis (African Grass Owl) is rated as Vulnerable (VU) on a regional basis. The distribution of the species includes the eastern parts of South Africa. The species is generally solitary, but it does also occur in pairs, in moist grasslands where it roosts (IUCN, 2017). The species prefers thick grasses around wetlands and rivers and has a preference for nesting in dense stands of the grass species *Imperata cylindrica*.

Falco biarmicus (Lanner Falcon) is native to South Africa and inhabits a wide variety of habitats, from lowland deserts to forested mountains (IUCN, 2017). Global population estimates are more than 30000 breeding pairs, in South Africa it is estimated to be 1400 pairs. They may occur in groups up to 20 individuals but have also been observed solitary. They are partial and facultative migrants, that breeds from May to early September. Nests are mostly found on cliff ledges, and they may alternate between more than one nest. Their diet is mainly composed of small birds such as pigeons and francolins. Anecdotal evidence suggests these species are susceptible to agrochemicals, another threat to their population is the clearing of grassland habitats (Roberts *et al.*, 2023).

Sagittarius serpentarius (Secretarybird) is listed as EN on a global scale (BirdLife International, 2020). The species has a wide distribution across sub-Saharan Africa, but surveyed densities suggest that the total population size does not exceed a five-figure number. Ad-hoc records, localised surveys and anecdotal observations indicate apparent declines in many parts of the species' range, especially in South Africa where reporting rates decreased by at least 60% of quarter degree grid cells used in Southern African Bird Atlas Projects. Threats include excessive burning of grasslands that may suppress populations of prey species, whilst the intensive grazing of livestock is also probably degrading otherwise suitable habitat. Disturbance by humans is likely to negatively affect breeding. The species is captured and traded; however, it is unknown how many deaths occur in captivity and transit. Direct hunting and nest-raiding for other uses and indiscriminate poisoning at waterholes are also further threats. A proposed conservation action is that landowners of suitable properties should join biodiversity stewardship initiatives and to manage their properties in a sustainable way for the species' populations.

Eupodotis senegalensis (White-bellied Korhaan) is Near-endemic to South Africa, occurring from the Limpopo Province and adjacent provinces, south through Swaziland to KwaZulu-Natal and the Eastern Cape. It generally prefers tall, dense sour or mixed grassland, either open or lightly wooded, occasionally moving into cultivated or burnt land (Hockey *et al*, 2005).

3.3 Fieldwork Findings

3.3.1 Species List of Field Survey

The avifaunal field survey was completed on the 31st of January 2024. This site visit was conducted to determine the presence of Species of Conservation Concern (SCC). Effort was made to cover all the different habitat types, within the limits of time and access. A total of 47 species were observed during the field survey and no SCC were recorded during this first survey period.

3.3.1.1 Risk Species

Priority Species are considered threatened, rare or prone to impacts from energy development (Ralston Paton *et al*, 2017). TBC has defined Risk Species as those species that are listed in Ralston Paton *et al* (2017) as Priority Species, as well as those listed in the Eskom poster of Birds and Power Lines (Eskom and EWT, no date), which together include all species, common or red-listed that may be at risk of collision, electrocution, or habitat loss as a result of the proposed activity. Six (6) of the species observed within the PAOI are regarded as priority species (Table 3-3**Error! Reference source not found.**).

Table 3-3Summary of Priority Species recorded within and around the proposed
development.

Common Name	Scientific Name	Collision	Electrocution	Disturbance/Habitat Loss
Black-headed Heron	Ardea melanocephala	х	х	X
Black-winged Kite	Elanus caeruleus	х	х	
Hadada Ibis	Bostrychia hagedash	х	х	
Helmeted Guineafowl	Numida meleagris	Х	х	
Melodious Lark	Mirafra cheniana	Х	Х	X
Swainson's Spurfowl	Pternistis swainsonii	x	x	

3.3.1.2 Dominant Species

Table 3-4 provides the relative abundance of the dominant species as well as the frequency with which each species appeared in the point count samples. The most abundant species was the *Euplectes orix* (Southern Red Bishop), with a relative abundance of 0.208 and a frequency of occurrence of 23.077%.

Table 3-4Relative abundance and frequency of occurrence of dominant avifauna species
recorded during the standardised point counts within and around the proposed
development during the field survey.

Common Name	Scientific Name	Family Name	Relative abundance	Frequency (%)
Southern Red Bishop	Euplectes orix	Ploceidae	0.208	23.077
Red-billed Quelea	Quelea quelea	Ploceidae	0.160	7.692
Desert Cisticola	Cisticola aridulus	Cisticolidae	0.061	84.615
Eastern Clapper Lark	Mirafra fasciolata	Alaudidae	0.048	53.846
Rufous-naped Lark	Mirafra africana	Alaudidae	0.048	76.923
Cloud Cisticola	Cisticola textrix	Cisticolidae	0.042	69.231
Southern Masked Weaver	Ploceus velatus	Ploceidae	0.042	38.462
Zitting Cisticola	Cisticola juncidis	Cisticolidae	0.042	84.615
Helmeted Guineafowl	Numida meleagris	Numididae	0.032	23.077
Quailfinch	Ortygospiza atricollis	Estrildidae	0.032	30.769
Cape Longclaw	Macronyx capensis	Motacillidae	0.029	46.154
Speckled Pigeon	Columba guinea	Columbidae	0.026	7.692
Red-collared Widowbird	Euplectes ardens	Ploceidae	0.022	38.462
Diederik Cuckoo	Chrysococcyx caprius	Cuculidae	0.019	46.154
Ring-necked Dove	Streptopelia capicola	Columbidae	0.019	30.769
White-browed Sparrow-Weaver	Plocepasser mahali	Ploceidae	0.019	30.769

3.3.1.3 Trophic Guilds

Trophic guilds are defined as a group of species that exploit the same class of environmental resources in a similar way (González-Salazar *et al*, 2014). The guild classification used in this assessment is as per González-Salazar *et al* (2014); they divided avifauna into 13 major groups based on their diet, habitat, and main area of activity. Although species to tend to exhibit varied diet with invertivores consuming fruit and frugivores consuming insects for example, the dominant composition of the diet was considered.

The analysis of the major avifaunal guilds reveals that the species composition during the survey was dominated by Insectivore Ground Diurnal (IGD) and Granivore Ground Diurnal (GGD) birds (Figure 3-13).

3.3.2 Flight and Nest Analysis

Observing and monitoring flight paths and nesting sites of SCC and/or priority species are important in ascertaining habitat sensitivity and evaluating the impact risk significance of any proposed development. Flight analysis is also important for species that exhibit diel movement between roosting and foraging sites to prevent the risk of collision with infrastructure. A very condensed version of flight path analysis was done, the aim of this was to determine if there is a general direction of most birds on site. This section needs to be interpreted cautiously based on the limited time spent on this component.

No specific flight paths were noted.

No active nest sites of Priority Species or SCC were recorded.

3.4 Habitat Assessment

Fine-scale habitats within the landscape are important in supporting a diverse avifauna community as they provide differing nesting, foraging and reproductive opportunities.

The main habitat types identified across the PAOI were initially delineated largely based on aerial imagery, and these main habitat types were then refined based on the field coverage and data collected during the survey. Four (4) habitats were delineated in total (Figure 3-14), a full description of the habitats is provided below.

Figure 3-14 Habitats identified within the assessment areas

3.4.1 Agriculture

This habitat includes all areas that maintain little to no native vegetation where anthropogenic and agricultural activity has substantially modified an area's primary ecological functions and species composition. This habitat unit no longer maintains its functional integrity and does not contribute significantly to ecosystem services (Figure 3-15).

SCC possible occupying this habitat: Abdim's Stork and Lanner Falcon.

Figure 3-15 Agricultural habitat

3.4.2 Grassland

This habitat is recovering grassland from historic negative impacts such as agricultural practices but cannot fully recover due to ongoing mismanagement and land use such as overgrazing by livestock. Some areas have faced more negative effects than others, but their ability to host avifaunal species is similar and therefore have not been delimited into separate habitats. Although this habitat has experienced negative impacts it still provides suitable habitat for foraging and nesting for avifaunal species (Figure 3-16).

SCC possible occupying this habitat: African Grass Owl, Lanner falcon, Secretarybird, and White-bellied Korhaan.

Figure 3-16 Grassland habitat

3.4.3 Transformed

Transformed habitat is has been completely cleared of its natural habitation for infrastructure, roads, and in this case, a substation. Due to its lack of natural habitation, it provides very little suitable habitat for local avifauna (Figure 3-17).

Figure 3-17 Transformed habitat

3.4.4 Water Resources

These water resources provide crucial habitat for waterbirds. The water sources present in the project area are made up of mostly wetlands that are likely seasonal. Distinguishing the wetlands during the

site survey was difficult and so the desktop data, specifically, the South African Inventory of Inland Aquatic Ecosystems, was used to delimit this habitat.

SCC possible occupying this habitat: Abdim's Stork.

3.5 Site Ecological Importance

The different habitat types within the PAOI were delineated and identified based on observations during the field assessment, and available satellite imagery. These habitat types were assigned Site Ecological Importance (SEI) categories based on their ecological integrity, conservation value, the presence of species of conservation concern.

Three habitat types were delineated within the Project Area, namely Agriculture, Grassland, and Transformed. Their respective SEI and the corresponding mitigation guidelines are summarised in Table 3-5.

Habitat Type	Conservation Importance	Functional Integrity	Biodiversity Importance	Receptor Resilience	Site Ecological Importance Guidelines
Agricultural	Low < 50% of receptor contains natural habitat with limited potential to support SCC.	Low Several minor and major current negative ecological impacts.	Low	High Habitat that can recover relatively quickly (~ 5–10 years) to restore > 75% of the original species composition and functionality of the receptor functionality, or species that have a high likelihood of remaining at a site even when a disturbance or impact is occurring, or species that have a high likelihood of returning to a site once the disturbance or impact has been removed.	Very Low Minimisation mitigation – development activities of medium to high impact acceptable and restoration activities may not be required.
Grassland	<u>Medium</u> Confirmed or highly likely occurrence of CR, EN, VU species.	Medium Mostly minor current negative ecological impacts with some major impacts and a few signs of minor past disturbance. Moderate rehabilitation potential.	Medium	<u>Medium</u> Will recover slowly (~ more than 10 years) to restore > 75% of the original species composition and functionality of the receptor functionality, or species that have a moderate likelihood of: (i) remaining at a site even when a disturbance or impact is occurring, or (ii) returning to a site once the disturbance or impact has been removed.	<u>Medium</u> Minimisation and restoration mitigation – development activities of medium impact acceptable followed by appropriate restoration activities.
Transformed	<u>Very Low</u> No confirmed and highly unlikely populations of SCC. No natural habitat remaining	Very Low Several major current negative ecological impacts.	Very Low	Very High Habitat that can recover rapidly (~ less than 5 years) to restore > 75% of the original species composition and functionality of the receptor functionality, or species that have a very high likelihood of remaining at a site even when a disturbance or impact is occurring, or species	Very Low Minimisation mitigation – development activities of medium to high impact acceptable and restoration activities may not be required.

Table 3-5 Summary of habitat types delineated within field assessment area

			that have a very high likelihood of returning to a site once the disturbance or impact has been removed.	
High Any area of natural habitat of a CR Water ecosystem type. Resources Confirmed or highly likely occurrence of CR, EN, VU species.	Low everal minor and major current egative ecological impacts	ledium	Medium Will recover slowly (~ more than 10 years) to restore > 75% of the original species composition and functionality of the receptor functionality, or species that have a moderate likelihood of: (i) remaining at a site even when a disturbance or impact is occurring, or (ii) returning to a site once the disturbance or impact has been removed.	<u>Medium</u> Minimisation and restoration mitigation – development activities of medium impact acceptable followed by appropriate restoration activities.

3.5.1 Desktop Ecological Senstivity

The following is deduced from the National Web-based Environmental Screening Tool Regulation 16(1)(v) of the Environmental Impact Assessment Regulations 2014, as amended):

- Terrestrial Biodiversity Theme sensitivity is Very High for the proposed development area, due to it overlapping with CBA1 and CBA2 areas, ESA1 and ESA2 areas, and NPAES Areas (Figure 3-18); and
- Animal Species Theme sensitivity is 'Medium' for the PAOI, with the possibility of Avifauna Species of Conservation Concern (SCC) being present (Figure 3-19).

MAP OF R	ELATIVE	E TERRESTRIAL	BIODIVERSITY THE	ME SENSITIVIT	Y
Legend: Wery Hig High Medium			tumar Bad, HEER, en Ballagua, Mart, Bar di Masta, ja upardituati	with UNISE block with NET Au president and the State of	Gian Harv Bit 3 Gian Harv Bit 3 Gian Harv Bit 3 Gian Harv Bit 3 Status Control of the Second
	1 1 1				A
Very High se	ensitivity	High sensitivity	Medium sensitivity	Low sensitivity	
X					
Sensitivity F	eatures:				
Sensitivity	Feature	(s)			
Low	Low Sens	itivity			
Very High	CBA 1				
Very High	CBA 2				
Very High	ESA 1				
Very High	ESA 2				
Very High	National	Protected Area Expansio	n Strategy (NPAES)		

Figure 3-18 Terrestrial Biodiversity Theme Sensitivity

THE SHOW			19 - L	
100				
1000				
			a partition of	
			all and the second s	Gien
		1		N /
				1 111
		1		9
				1
1.00				
		1	at the second	
		100	and the second second	
Legend:				
Very Hit	ab			
High				
Medium			Sources Es/i, HERE, Ga	min, USGS, Intermap, INCREMENT P. NR
Low			Esti Japan, METT, Esti Gi	hina (Hong Kong), Esri Korea, Esri (Thailan)
			NGCC, [c] OpenStreetMa	ap contributors and the GIS User Communit
1 15		6 Nils meters	NGCC, [c] OpenStreetWi	ap contributors, and the GIS User Communi
e 15		ő Niternetern	NGCC. (c) OpenStreetMr	ap contributors, and the GIS User Communi
L 15	. 1	6 Nilstweisers	NGCC, jc, OpenStreetMr	ap contributors' and the G-S User Communi
Where only a	a sensitive	plant unique numb	er or sensitive animal un	ap contributors) and the GIS User Communi
Where only a	a sensitive	plant unique numb	er or sensitive animal un	ique number is provided in
Where only a	a sensitive	plant unique numb	er or sensitive animal un uired, the environmenta	ique number is provided in lassessment practitioner (E
Where only a screening re	a sensitive port and a is required	plant unique numb n assessment is requ to email SANBI at <u>e</u>	er or sensitive animal un uired, the environmental eiadatarequests@sanbi.c	ique number is provided in l assessment practitioner (E org.za listing all sensitive spe
Where only a screening re or specialist with their un	a sensitive port and a is required ique ident	plant unique numb n assessment is requ to email SANBI at <u>e</u> ifiers for which info	er or sensitive animal un uired, the environmental eiadatarequests@sanbi.c rmation is required. The	ique number is provided in l assessment practitioner (E org.za listing all sensitive spe name has been withheld as
Where only a screening re or specialist with their un species may	a sensitive port and a is required ique ident be prone t	plant unique numb n assessment is requ to email SANBI at <u>e</u> ifiers for which info to illegal harvesting	er or sensitive animal un uired, the environmental <u>eiadatarequests@sanbi.c</u> rmation is required. The and must be protected. S	ique number is provided in l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua
Where only a screening re- por specialist with their un species may species nam	a sensitive port and a is required igue ident be prone t e after the	plant unique numb n assessment is requ to email SANBI at <u>e</u> ifiers for which info to illegal harvesting details of the EAP of	er or sensitive animal un uired, the environmental <u>eiadatarequests@sanbi.c</u> rmation is required. The and must be protected. S or specialist have been do	ique number is provided in l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.
Where only a screening re- por specialist with their un species may species name	a sensitive port and a is required ique ident be prone t e after the	plant unique numb n assessment is requ to email SANBI at <u>e</u> ifiers for which info to illegal harvesting details of the EAP o	er or sensitive animal un uired, the environmental <u>eiadatarequests@sanbi.c</u> rmation is required. The and must be protected. S or specialist have been do	ascontributors and the GIS User Communi- ique number is provided in l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.
Where only a screening re- por specialist with their un species may species name	a sensitive port and a is required ique ident be prone t e after the	plant unique numb n assessment is requ to email SANBI at <u>e</u> ifiers for which info to illegal harvesting details of the EAP of High sensitivity	er or sensitive animal un uired, the environmental <u>eiadatarequests@sanbi.c</u> rmation is required. The and must be protected. S or specialist have been do Medium sensitivity	ascontributors and the GIS User Communi- lique number is provided in l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.
Where only a screening re- por specialist with their un species may species name	a sensitive port and a is required ique ident be prone t e after the msitivity	plant unique numb n assessment is requ to email SANBI at <u>e</u> ifiers for which info to illegal harvesting details of the EAP of High sensitivity	er or sensitive animal un uired, the environmental <u>eiadatarequests@sanbi.c</u> rmation is required. The and must be protected. S or specialist have been do Medium sensitivity	approximitates and the GIS User Communi- ique number is provided in l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.
Where only a screening re- por specialist with their un species may species name	a sensitive port and a is required ique ident be prone t e after the msitivity	plant unique numb n assessment is requ to email SANBI at <u>e</u> ifiers for which info to illegal harvesting details of the EAP of High sensitivity	er or sensitive animal un uired, the environmental <u>eiadatarequests@sanbi.c</u> rmation is required. The and must be protected. S or specialist have been do Medium sensitivity x	approximitates and the GIS User Communi- lique number is provided in l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.
Where only a screening re- por specialist with their un species may species name Very High se	a sensitive port and a is required ique ident be prone t e after the msitivity	plant unique numb n assessment is requ to email SANBI at <u>e</u> ifiers for which info to illegal harvesting details of the EAP of High sensitivity	er or sensitive animal un uired, the environmental eiadatarequests@sanbi.c rmation is required. The and must be protected. S or specialist have been do Medium sensitivity x	ascontributors and the G S User Communi l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.
Where only a screening re- or specialist with their un species may species name Very High se Sensitivity F	a sensitive port and a is required ique ident be prone t e after the ensitivity eatures:	plant unique numb n assessment is requ to email SANBI at <u>e</u> ifiers for which info to illegal harvesting details of the EAP of High sensitivity	er or sensitive animal un uired, the environmental eiadatarequests@sanbi.c rmation is required. The and must be protected. S or specialist have been do Medium sensitivity X	ascontributors and the G S User Communi l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.
Where only is screening re- pr specialist with their un species may species name Very High se Sensitivity F	a sensitive port and a is required ique ident be prone t e after the ensitivity eatures:	plant unique numb n assessment is requ to email SANBI at <u>c</u> ifiers for which info to illegal harvesting details of the EAP of High sensitivity	er or sensitive animal un uired, the environmental <u>eiadatarequests@sanbi.c</u> rmation is required. The and must be protected. S or specialist have been do <u>Medium sensitivity</u> X	ascontributors and the G S User Communi l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.
Where only is screening re- pr specialist with their un species may species nam Very High se Sensitivity For Sensitivity	a sensitive port and a is required ique ident be prone t e after the ensitivity eatures: Feature	plant unique numb n assessment is requ to email SANBI at <u>e</u> ifiers for which info to illegal harvesting details of the EAP of High sensitivity	er or sensitive animal un uired, the environmental eiadatarequests@sanbi.c rmation is required. The and must be protected. S or specialist have been do Medium sensitivity x	ascontributors and the G S User Communi l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.
Where only is screening re- pr specialist with their un species may species nam Very High se Sensitivity For Sensitivity Medium	a sensitive port and a is required ique ident be prone t e after the ensitivity eatures: Feature Aves-Tyto	plant unique numb n assessment is requ to email SANBI at <u>c</u> ifiers for which info to illegal harvesting details of the EAP of High sensitivity	er or sensitive animal un uired, the environmental <u>eiadatarequests@sanbi.c</u> rmation is required. The and must be protected. S or specialist have been do <u>Medium sensitivity</u> x	ascontributors and the G S User Communi l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.
Where only is screening re- pr specialist with their un species may species nam Very High se Sensitivity For Sensitivity For Sensitivity Medium	a sensitive port and a is required igue ident be prone t e after the ensitivity eatures: Feature Aves-Tyto Aves-Eupo	plant unique numb n assessment is requ to email SANBI at <u>c</u> tifiers for which info to illegal harvesting details of the EAP of High sensitivity	er or sensitive animal un uired, the environmental eiadatarequests@sanbi.c rmation is required. The and must be protected. S or specialist have been do Medium sensitivity x	ascontributors and the G S User Communi l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.
Where only is screening re- pr specialist with their un species may species name Very High se Sensitivity Fe Sensitivity Medium Medium Medium	a sensitive port and a is required igue ident be prone t e after the ensitivity eatures: Feature Aves-Tyto Aves-Eupp Insecta-Le	plant unique numb n assessment is requ to email SANBI at <u>c</u> tifiers for which info to illegal harvesting details of the EAP of High sensitivity (s) capensis odotis senegalensis epidochrysops praeterita	er or sensitive animal un uired, the environmental eiadatarequests@sanbi.c rmation is required. The and must be protected. S or specialist have been do Medium sensitivity x	ascontributors and the G S User Communi l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.
Where only is screening re or specialist with their un species may species name Very High se Sensitivity Fe Sensitivity Medium Medium Medium Medium	a sensitive port and a is required igue ident be prone t e after the ensitivity eatures: Features Aves-Tyto Aves-Eupp Insecta-Le Insecta-Le	plant unique numb n assessment is requ to email SANBI at <u>c</u> tifiers for which info to illegal harvesting details of the EAP of High sensitivity (s) capensis odotis senegalensis epidochrysops praeterita epidochrysops procera	er or sensitive animal un uired, the environmental <u>eiadatarequests@sanbi.c</u> rmation is required. The and must be protected. S or specialist have been do <u>Medium sensitivity</u> x	ique number is provided in l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.
Where only is screening re- pr specialist with their ur species may species name Very High se Sensitivity For Sensitivity Medium Medium Medium Medium	a sensitive port and a is required igue ident be prone t e after the msitivity eatures: <u>Feature</u> <u>Aves-Tyto</u> <u>Aves-Eupo</u> <u>Insecta-Le</u> <u>Mammali</u>	plant unique numb n assessment is requ to email SANBI at <u>c</u> tifiers for which info to illegal harvesting details of the EAP of High sensitivity (s) capensis podotis senegalensis epidochrysops praeterita epidochrysops procera a-Crocidura maquassien	er or sensitive animal un uired, the environmental <u>eiadatarequests@sanbi.c</u> rmation is required. The and must be protected. So or specialist have been do <u>Medium sensitivity</u> x	ique number is provided in l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.
Where only is screening re- pr specialist with their ur species may species name Very High se Sensitivity For Sensitivity For Sensitivity Medium Medium Medium Medium Medium Medium	a sensitive port and a is required igue ident be prone t e after the ensitivity eatures: <u>Feature</u> <u>Aves-Tyto</u> <u>Aves-Eupo</u> <u>Insecta-Le</u> <u>Mammali</u>	plant unique numb n assessment is requ to email SANBI at <u>c</u> tifiers for which info to illegal harvesting details of the EAP of High sensitivity (s) capensis pidochrysops praeterita epidochrysops praeterita a-Crocidura maquassien a-Hydrictis maculicollis	er or sensitive animal un uired, the environmental <u>eiadatarequests@sanbi.c</u> rmation is required. The and must be protected. 9 or specialist have been do <u>Medium sensitivity</u> x	ique number is provided in l assessment practitioner (E org.za listing all sensitive spe name has been withheld as SANBI will release the actua ocumented.

Figure 3-19 Animal Species Theme Sensitivity
3.5.2 Screening Tool Comparison

The allocated sensitivities for each of the relevant themes are either disputed or validated for the assessed areas in Table 3-6 below. A summative explanation for each result is provided as relevant. The specialist-assigned sensitivity ratings are based largely on the SEI process followed in the previous section, and consideration is given to any observed or likely presence of SCC or protected species. The sensitivities delineated for the project area is illustrated in Figure 3-20.

Table 3-6Summary of the screening tool	vs specialist-assigned sensitivities
--	--------------------------------------

Screening Tool Theme	Screening Tool	Habitat	Specialist	Tool Validated or Disputed by Specialist - Reasoning
		Agriculture	Very Low	Disputed – Habitat shows negative impacts and has limited potential to support SCC.
Animal Theme Medium	Madium	Grassland	Medium	Validated – Habitat shows some negative impacts but still has the potential to support SCC.
	Mealum	Transformed	Very Low	Disputed – Habitat has been severely altered with limited potential to support SCC.
		Water Resources	Medium	Validated – This CR wetland shows several negative impacts including agricultural impacts in this habitat.

4 Impact Assessment

4.1 Current Impacts to Biodiversity

In consideration that there are anthropogenic activities and influences present within the landscape, there are currently several negative impacts to biodiversity, including avifauna. These include:

- Historic and current land modification to accommodate roads, powerline and substation infrastructure, agricultural land use, and the associated land clearing;
- Livestock; and
- Fences and the associated infrastructure (Figure 4-1).

Figure 4-1 Photograph illustrating current negative impacts associated with the PAOI: A) Powerlines and agricultural land, B) Substation infrastructure, and C) Livestock.

4.2 Alternatives Considered

No alternatives were considered.

4.3 Loss of Irreplaceable Resources

The proposed development will lead to the loss of the following irreplaceable resources:

- Habitat and possible nesting sites for numerous expected avifauna SCC; and
- CBA1 and CBA2 areas, ESA1 and ESA2 areas, and NPAES Areas.

4.4 Quantitative Impact Assessment

Potential impacts were evaluated against the data captured during the fieldwork and from a desktop perspective to identify relevance to the project area of interest, specifically the proposed development footprint area. Bennun *et al* (2021) describes three broad types of impacts associated with solar energy development:

- Direct impacts Impacts that result from project activities or operational decisions that can be predicted based on planned activities and knowledge of local biodiversity, such as habitat loss under the project footprint, habitat fragmentation as a result of project infrastructure and species disturbance or mortality as a result of project operations;
- Indirect impacts Impacts induced by, or 'by-products' of, project activities within a project's area of influence; and
- Cumulative impacts Impacts that result from the successive, incremental and/or combined effects of existing, planned and/or reasonably anticipated future human activities in combination with project development impacts.

The assessment of impact significance considers pre-mitigation as well as implemented post-mitigation scenarios. Although different species and groups will react differently to the development, the risk assessment was undertaken bearing in mind the potential impacts to the priority species listed in this report. Three phases were considered for the impact assessment:

- Construction Phase;
- Operational Phase; and
- Decommissioning Phase.

4.4.1 Construction Phase

The following potential main impacts on biodiversity were considered for the construction phase of the proposed development. This phase refers to the period during construction when the proposed features are constructed; and is considered to have the largest direct impact on biodiversity. The following potential impacts to avifauna were considered (Table 4-1**Error! Reference source not found.**):

- Habitat Loss (Destroy, fragment, and degrade CBA habitat, ultimately displacing avifauna);
- Sensory disturbances (e.g. noise, dust, vibrations);
- Collection of eggs and poaching;
- Roadkill; and
- Displacement or death of SCCs.

Table 4-1Assessment of significance of potential impacts on avifauna associated with the
construction phase

		Prior to mitigation						
Impact	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance		
Habitat Loss (Destroy	4	3	4	3	5			
fragment, and degrade CBA	Life of operation or	Local area/ within 1 km of	Great / harmful/	Ecology moderately	Definite	Moderately High		

	laas 45 - 00	4114		a section of	I	
and ESA nabitat, ultimately displacing avifauna	years: Long	the site boundary / <	ecosystem structure and	sensitive/ /important		
	Ierm	5000na impacted /	function largely altered			
		Linear features affected <				
		1000m				
	4	3	3	3	4	
Sensory disturbances (e.g. noise, dust, vibrations)	Life of operation or less than 20 years: Long Term	vithin 1 km of the site boundary / < 5000ha impacted / Linear features affected < 1000m	Significant / ecosystem structure and function moderately altered	Ecology moderately sensitive/ /important	Highly likely	Moderate
	4	4	3	3	4	
Displacement/emigration of avifauna community (including SCC) due to noise pollution	Life of operation or less than 20 years: Long Term	Regional within 5 km of the site boundary / < 2000ha impacted / Linear features affected < 3000m	Significant / ecosystem structure and function moderately altered	Ecology moderately sensitive/ /important	Highly likely	Moderately High
	4	3	3	3	4	
Collection of eggs and poaching	Life of operation or less than 20 years: Long Term	Local area/ within 1 km of the site boundary / < 5000ha impacted / Linear features affected < 1000m	Significant / ecosystem structure and function moderately altered	Ecology moderately sensitive/ /important	Highly likely	Moderate
	4	3	3	3	4	
Roadkill	Life of operation or less than 20 years: Long Term	Local area/ within 1 km of the site boundary / < 5000ha impacted / Linear features affected < 1000m	Significant / ecosystem structure and function moderately altered	Ecology moderately sensitive/ /important	Highly likely	Moderate
	4	4	4	3	4	
Displacement or death of SCCs	Life of operation or less than 20 years: Long Term	Regional within 5 km of the site boundary / < 2000ha impacted / Linear features affected < 3000m	Great / harmful/ ecosystem structure and function largely altered	Ecology moderately sensitive/ /important	Highly likely	Moderately High
			Post m	itigation		
Impact	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance
Habitat Loss (Destroy,	4	1	2	3	3	
tragment, and degrade CBA and ESA habitat, ultimately displacing avifauna	Life of operation or	Activity specific/ < 5 ha impacted	Small / ecosystem	Ecology moderately	Likely	Low

	less than 20 years: Long Term	/ Linear features affected < 100m	structure and function largely unchanged	sensitive/ /important		
	3	2	2	3	3	
Sensory disturbances (e.g. noise, dust, vibrations)	One year to five years: Medium Term	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Small / ecosystem structure and function largely unchanged	Ecology moderately sensitive/ /important	Likely	Low
	3	2	2	3	3	
Displacement/emigration of avifauna community (including SCC) due to noise pollution	One year to five years: Medium Term	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Small / ecosystem structure and function largely unchanged	Ecology moderately sensitive/ /important	Likely	Low
	2	2	2	3	3	
Collection of eggs and poaching	One month to one year: Short Term	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Small / ecosystem structure and function largely unchanged	Ecology moderately sensitive/ /important	Likely	Low
	2	2	2	3	2	
Roadkill	One month to one year: Short Term	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Small / ecosystem structure and function largely unchanged	Ecology moderately sensitive/ /important	Possible	Low
	2	2	2	3	1	
Displacement or death of SCCs	One month to one year: Short Term	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Small / ecosystem structure and function largely unchanged	Ecology moderately sensitive/ /important	Highly unlikely	Absent

4.4.2 Operation Phase

The operational phase includes the following impacts (Table 4-2):

- Roadkill by maintenance vehicles;
- Collisions with powerlines;
- Electrocution by powerlines; and
- Displacement or death of SCCs.

Table 4-2Assessment of significance of potential impacts on avifauna associated with the
operational phase

			Prior to miti	gation		
Impact	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance
	4	3	3	3	3	
Roadkill	Life of operation or less than 20 years: Long Term	Local area/ within 1 km of the site boundary / < 5000ha impacted / Linear features affected < 1000m	Significant / ecosystem structure and function moderately altered	Ecology moderately sensitive/ /important	Likely	Moderate
	4	3	4	3	4	
Collisions with infrastructure associated with the BESS Facility and Powerlines	Life of operation or less than 20 years: Long Term	Local area/ within 1 km of the site boundary / < 5000ha impacted / Linear features affected < 1000m	Great / harmful/ ecosystem structure and function largely altered	Ecology moderately sensitive/ /important	Highly likely	Moderately High
	4	3	4	3	4	
Electrocution due to the infrastructure associated with the BESS Facility and Powerlines	Life of operation or less than 20 years: Long Term	Local area/ within 1 km of the site boundary / < 5000ha impacted / Linear features affected < 1000m	Great / harmful/ ecosystem structure and function largely altered	Ecology moderately sensitive/ /important	Highly likely	Moderately High
	4	3	3	3	4	
Pollution of water sources and surrounding habitat	Life of operation or less than 20 years: Long Term	Local area/ within 1 km of the site boundary / < 5000ha impacted / Linear features affected < 1000m	Significant / ecosystem structure and function moderately altered	Ecology moderately sensitive/ /important	Highly likely	Moderate
	4	3	4	3	5	
Heat radiation from the BESS	Life of operation or less than 20 years: Long Term	Local area/ within 1 km of the site boundary / < 5000ha impacted / Linear	Great / harmful/ ecosystem structure	Ecology moderately sensitive/ /important	Definite	Moderately High

		features affected < 1000m	and function largely altered			
	4	4	4	4	5	
Encroachment of Invasive Alien Plants into disturbed areas	Life of operation or less than 20 years: Long Term	Regional within 5 km of the site boundary / < 2000ha impacted / Linear features affected < 3000m	Great / harmful/ ecosystem structure and function largely altered	Ecology highly sensitive /important	Definite	High
	4	3	3	4	3	
Displacement or death of SCCs	Life of operation or less than 20 years: Long Term	Local area/ within 1 km of the site boundary / < 5000ha impacted / Linear features affected < 1000m	Significant / ecosystem structure and function moderately altered	Ecology highly sensitive /important	Likely	Moderate
			Post mitiga	ation	1	
Impact	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance
	1	2	2	3	2	
Roadkill	One day to one month: Temporary	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Small / ecosystem structure and function largely unchanged	Ecology moderately sensitive/ /important	Possible	Absent
	4	2	3	3	3	
Collisions with infrastructure associated with the BESS Facility and Powerlines	Life of operation or less than 20 years: Long Term	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Significant / ecosystem structure and function moderately altered	Ecology moderately sensitive/ /important	Likely	Moderate
	4	2	3	3	3	
Electrocution due to the infrastructure associated with the BESS Facility and Powerlines	Life of operation or less than 20 years: Long Term	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Significant / ecosystem structure and function moderately altered	Ecology moderately sensitive/ /important	Likely	Moderate
	4	2	2	2	3	
Pollution of water sources and surrounding habitat	Life of operation or less than 20 years: Long Term	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Small / ecosystem structure and function largely unchanged	Ecology with limited sensitivity/importance	Likely	Low
	4	2	3	3	3	

Heat radiation from the BESS	Life of operation or less than 20 years: Long Term	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Significant / ecosystem structure and function moderately altered	Ecology moderately sensitive/ /important	Likely	Moderate
	4	1	3	3	3	
Encroachment of Invasive Alien Plants into disturbed areas	Life of operation or less than 20 years: Long Term	Activity specific/ < 5 ha impacted / Linear features affected < 100m	Significant / ecosystem structure and function moderately altered	Ecology moderately sensitive/ /important	Likely	Low
	2	2	2	3	1	
Displacement or death of SCCs	One month to one year: Short Term	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Small / ecosystem structure and function largely unchanged	Ecology moderately sensitive/ /important	Highly unlikely	Absent

4.4.3 Construction Phase

This phase is when the plant is being decommissioned and the infrastructure is being removed. The following impacts were considered (Table 4-3):

- Habitat Loss (Destroy, fragment, and degrade habitat, ultimately displacing avifauna);
- Sensory disturbances (e.g. noise, dust, vibrations);
- Roadkill; and
- Collisions with powerlines.

Table 4-3Assessment of significance of potential impacts on avifauna associated with the
decommissioning phase

		Prior to mitigation							
Impact	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance			
	3	3	2	3	2				
Habitat Loss (Destroy, fragment, and degrade habitat, ultimately displacing avifauna)	One year to five years: Medium Term	Local area/ within 1 km of the site boundary / < 5000ha impacted / Linear features affected < 1000m	Small / ecosystem structure and function largely unchanged	Ecology moderately sensitive/ /important	Possible	Low			
0	3	3	3	3	2				
disturbances (e.g., noise, dust, vibrations)	One year to five years: Medium Term	Local area/ within 1 km of the site boundary / <	Significant / ecosystem structure and function	Ecology moderately sensitive/ /important	Possible	Low			

		5000ha impacted / Linear features affected < 1000m	moderately altered			
	3	3	3	3	2	
Roadkill	One year to five years: Medium Term	Local area/ within 1 km of the site boundary / < 5000ha impacted / Linear features affected < 1000m	Significant / ecosystem structure and function moderately altered	Ecology moderately sensitive/ /important	Possible	Low
	5	3	3	3	4	
Collisions with powerlines	Permanent	Local area/ within 1 km of the site boundary / < 5000ha impacted / Linear features affected < 1000m	Significant / ecosystem structure and function moderately altered	Ecology moderately sensitive/ /important	Highly likely	Moderately High
	3	3	3	3	2	
Continued habitat degradation due to Invasive Alien Plant encroachment and erosion	One year to five years: Medium Term	Local area/ within 1 km of the site boundary / < 5000ha impacted / Linear features affected < 1000m	Significant / ecosystem structure and function moderately altered	Ecology moderately sensitive/ /important	Possible	Low
			P	ost mitigation		
Impact	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance
	2	2	2	3	1	
Habitat Loss (Destroy, fragment, and degrade habitat, ultimately displacing avifauna)	One month to one year: Short Term	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Small / ecosystem structure and function largely unchanged	Ecology moderately sensitive/ /important	Highly unlikely	Absent
	2	2	2	3	1	
Sensory disturbances (e.g noise, dust, vibrations)	One month to one year: Short Term	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Small / ecosystem structure and function largely unchanged	Ecology moderately sensitive/ /important	Highly unlikely	Absent
Roadkill	2	2	2	3	1	
					Highly unlikely	Absent

	One month to one year: Short Term	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Small / ecosystem structure and function largely unchanged	Ecology moderately sensitive/ /important		
	1	1	1	1	1	
Collisions with powerlines	One day to one month: Temporary	Activity specific/ < 5 ha impacted / Linear features affected < 100m	Insignificant / ecosystem structure and function unchanged	Ecology not sensitive/important	Highly unlikely	Absent
	2	2	2	3	1	
Continued habitat degradation due to Invasive Alien Plant encroachment and erosion	One month to one year: Short Term	Development specific/ within the site boundary / < 100 ha impacted / Linear features affected < 100m	Small / ecosystem structure and function largely unchanged	Ecology moderately sensitive/ /important	Highly unlikely	Absent

4.4.4 Cumulative Impacts

Cumulative impacts are assessed within the context of the extent of the proposed PAOI, other developments and activities in the area (existing and proposed) and general habitat loss and disturbance resulting from any other anthropogenic activities in the area. The impacts of projects are often assessed by comparing the post-project situation to a pre-existing baseline. Where projects can be considered in isolation this provides a good method of assessing a project's impact. However, in areas where baselines have already been affected, or where future development will continue to add to the impacts in an area or region, it is appropriate to consider the cumulative effects of development or disturbance activities. This is similar to the concept of shifting baselines, which describes how the environmental baseline at a specific point in time may actually represent a significant change from the original state of the system. This section describes the potential cumulative impacts of the project on the local and regional avifauna community.

Localised cumulative impacts include those from operations that are close enough to potentially cause additive effects on the local environment or any sensitive receivers (such as nearby large road networks, other solar PV facilities, and power infrastructure). Relevant activities and impacts include dust deposition, noise and vibration, loss of corridors or habitat, disruption of waterways, groundwater drawdown, groundwater and surface water depletion, and transport activities. Long-term cumulative impacts associated with the site development activities can lead to the loss of endemic and threatened species, including natural habitat and vegetation types, and these impacts can even lead to the degradation of conserved areas such as the adjacent game parks and reserves.

A total area of 30 km surrounding the PAOI were used to assess the total habitat loss in the area and subsequently the cumulative impact. To determine the intact remnant habitat the NBA (2018) remnant spatial data was utilised. The future renewable energy projects were also considered by utilising the REEA Q3 (2023) spatial dataset. In order to remove any duplication, only the areas that overlap with the remanence areas were considered. The total cumulative loss was found to be 57.63% (

Table 4-4).

Total Area of 30km²	Total Habitat Lost	Intact Remnant Habitat	Total Historic Loss	REEA area and PAOI overlapping with remnant areas	Total Disturbed/Transformed habitat	Percentage area lost
341795.37 ha	195112.28 ha	146683.09 ha	57.08%	1857.49 ha	196969.76 ha	57.63%

Table 4-4 The cumulative impacts considered for avifat	ına
--	-----

The proposed SPP in isolation has a Negative Moderate impact significance (Table 4-5). In consideration of the aforementioned information, although there is still a high amount of intact remnant habitat within the 30 km buffer, the project area and other future renewable energy projects have minimal overlap with these remnants, resulting in the cumulative impact determined to be of a Negative Moderate significance (Figure 4-2).

Figure 4-2 Cumulative habitat loss in 30 km surrounding the PAOI

Table 4-5Cumulative Impacts to avifauna associated with the proposed project

	Project in Isolation						
Impact	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance	
Loss of habitat.	4	3	3	3	3		
and disruption of surrounding	Life of operation or	Local area/ within 1 km	Significant / ecosystem	Ecology moderately sensitive/ /important	Likely	Moderate	

Avifauna Theme

Midas BESS & OHL Avifauna Assessment

ecological corridors.	less than 20 years: Long Term	of the site boundary / < 5000ha impacted / Linear features affected < 1000m	structure and function moderately altered			
				Cumulative Effect		
Impact	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance
	5	4	3	3	3	
Loss of habitat, and disruption of surrounding ecological corridors.	Permanent	Regional within 5 km of the site boundary / < 2000ha impacted / Linear features affected < 3000m	Significant / ecosystem structure and function moderately altered	Ecology moderately sensitive/ /important	Likely	Moderate

5 Avifauna Impact Management Actions

The purpose of the Biodiversity Impact Management Actions of is to present the mitigations in such a way that they can be incorporated into the Environmental Management Programme (EMPr), allowing for more successful implementation and auditing of the mitigations and monitoring guidelines. This mitigation table must be read in conjunction with the Generic Environmental Management Programme (EMPR) for the development and expansion of substation infrastructure for the transmission and distribution of electricity as per No. 42323 GOVERNMENT GAZETTE, 22 MARCH 2019.

Table 5-1 presents the recommended mitigation measures and the respective timeframes, targets, and performance indicators pertaining to the avifaunal component.

Table 5-1Summary of management outcomes pertaining to impacts on avifauna and their
habitats

	Implement	Implementation Monitoring		
Impact Management Actions	Phase	Responsib le Party	Aspect	Frequency
	Management outc	ome: Habitats		
A nest walkdown must be performed prior to clearance of the site, this is especially pertinent for the detection of the SCC species nests such as the White-bellied Korhaan. If nests are found a suitably qualified specialist must be contacted to advise on the way forward.	Construction Phase	Environme ntal Officer	Development footprint	During Phase
The areas to be developed must be specifically demarcated to prevent movement into surrounding environments.	Life of operation	Project Manager Environme ntal Officer	Development footprint	Ongoing
Areas of indigenous vegetation, even secondary communities outside of the direct project footprint, must under no circumstances be fragmented or disturbed further.	Life of operation	Project Manager Environme ntal Officer	Areas of indigenous vegetation	Ongoing
Areas that are denuded during construction need to be re-vegetated with indigenous vegetation to prevent erosion. This will also reduce the likelihood of encroachment by alien	Decommissioning /Rehabilitation	Project Manager	Areas that are denuded during construction need to be re- vegetated with indigenous vegetation to prevent erosion.	Decommissi oning /Rehabilitatio n

invasive plant species. Topsoil must also be utilised, and any disturbed area must be re- vegetated with plant and grass species which are indigenous to this vegetation type.			This will also reduce the likelihood of encroachment by alien invasive plant species. Topsoil must also be utilised, and any disturbed area must be re-vegetated with plant and grass species which are indigenous to this vegetation type.	
A hydrocarbon spill management plan must be put in place to ensure that should there be any chemical spill out or over that it does not run into the surrounding areas. The Contractor shall be in possession of an emergency spill kit that must always be complete and available on site. Drip trays or any form of oil absorbent material must be placed underneath vehicles/machinery and equipment when not in use. No servicing of equipment on site unless necessary. All contaminated soil / yard stone shall be treated in situ or removed and be placed in containers. Appropriately contain any generator diesel storage tanks, machinery spills (e.g., accidental spills of hydrocarbons oils, diesel etc.) in such a way as to prevent them leaking and entering the environment.	Life of operation	Environme ntal Officer Contractor	Spill events, Vehicles dripping.	Ongoing
Cement must be mixed in a designated area on a liner away from water sources and buffers and that successful rehabilitation of the construction areas can take place.	Planning and Construction	Project Manager Environme ntal Officer Contractor Engineer	Water pollution and restricted rehabilitation	During phase
Leaking equipment and vehicles must be repaired immediately or be removed from PAOI to facilitate repair.	Life of operation	Environme ntal Officer Contractor	Leaks and spills	Ongoing
A fire management plan needs to be complied to restrict the impact of fire.	Life of operation	Environme ntal Officer Contractor	Fire Management	During Phase
Dust-reducing mitigation measures must be put in place and must be strictly adhered to, for all areas of construction. This includes wetting of exposed soft soil surfaces. No non- environmentally friendly suppressants may be used as this could result in the pollution of water sources.	Life of operation	Project Manager Contractor	Dustfall	As per dust monitoring program.
	Management outc	ome: Avifauna		
Impact Management Actions	Implement	ation	Monitoring	
	Phase	Responsib le Party	Aspect	Frequency
All personnel should undergo environmental induction with regards to avifauna and in particular awareness about not harming, collecting, or hunting terrestrial species, and owls, which are often persecuted out of superstition. Signs must be put up to enforce this.	Life of operation	Environme ntal Officer	Evidence of trapping etc	Ongoing
The duration of the construction must be kept to a minimum to avoid disturbing avifauna.	Construction/Oper ational Phase	Project Manager Environme ntal Officer	Construction/Closure Phase	Ongoing
Outside lighting must be designed and limited to minimize impacts on fauna. All outside lighting should be directed away from highly sensitive areas. Fluorescent and mercury	Construction/Oper ational Phase	Project Manager Environme ntal Officer	Light pollution and period of light.	Ongoing

vapor lighting should be avoided, and sodium		Design		
vapor (red/green) lights should be used.		Engineer		
		Project		
Bird Flappers and diverters must be placed		Manager		
along the whole route this must be done at 5	Construction/Oper	Environme	Bird Collisions	Ongoing
minton/olo	ational Phase	ntal Officer	Bird Combiolitic	ongoing
m mervals.		Design		
		Engineer		
Overhead cables/lines must be fitted with				

industry standard bird flight diverters in order to make the lines as visible as possible to collision-susceptible species. Shaw et al (2021) demonstrated that large avifauna species mortality was reduced by 51% (95% CI: 23-68%). Recommended bird diverters such as flapping devices (dynamic device) and thickened wire spirals (static device) that increase the visibility of the lines should be fitted 5 m apart. The Inotec BFD88 bird diverter is highly recommended due to its visibility under low light conditions when most species move from roosting to feeding sites.

_	(dynamic-device)¶	
	0	
-		
• •		
1.000	inotec BFDeou (source: https://migratorys	
• →		

Construction/Oper ational Phase

Environme ntal Officer Design

Project Manager

Engineer

Bird Collisions

Ongoing

Project Any OHLs must be of a design that minimizes Manager electrocution risk by using adequately insulated Construction/Oper Environme **Bird Electrocutions** 'bird friendly' monopole structures, with Ongoing ational Phase ntal Officer clearances between live components of 2 m or Design greater. Engineer Ensure that the phase cables are spaced far Project enough apart to reduce the risk of large birds Manager touching both simultaneously (2 m for large Construction/Oper Environme **Bird Electrocutions** raptors) (Prinsen et al., 2012). If such Ongoing ational Phase ntal Officer separation (isolation) cannot be provided, Design exposed parts must be covered (insulated) to Engineer reduce electrocution risk. All construction and maintenance motor vehicle operators should undergo an environmental induction that includes instruction on the need Health and to comply with speed limit (40 km/h), to respect Life of Operation Safety Compliance to the training. Ongoing all forms of wildlife. Speed limits must be Officer enforced to ensure that road killings and erosion is limited.

All project activities must be undertaken with appropriate noise mitigation measures to avoid disturbance to avifauna population in the region	Construction/Oper ational Phase	Project Manager Environme	Noise	Ongoing
All areas to be developed must be walked through prior to any activity to ensure no nests or avifauna species are found in the area. Should any Species of Conservation Concern be found and not move out of the area, or their nest be found in the area a suitably qualified specialist must be consulted to advise on the correct actions to be taken.	Construction	Environme ntal Officer	Presence of avifauna species and nests	During Phase
The design of the proposed transmission line must be of a type or similar structure as endorsed by the Eskom-EWT Strategic Partnership on Birds and Energy, considering the mitigation guidelines recommended by Birdlife South Africa (Jenkins <i>et al.</i> , 2017).	Planning and Construction	Project Manager Environme ntal Officer Contractor Engineer	Presence of electrocuted birds or bird strikes	During Phase
Infrastructure must be consolidated where possible in order to minimise the amount of ground and air space used.	Planning and Construction	Project Manager Environme ntal Officer Contractor Engineer	Presence of bird collisions	During phase
All the parts of the infrastructure must be nest proofed and anti-perch devices placed on areas that can lead to electrocution	Planning and Construction	Environme ntal Officer Contractor Engineer	Presence of electrocuted birds	During phase
Use environmentally friendly cleaning and dust suppressant products	Construction and Operation	Environme ntal Officer Contractor Engineer	Chemicals used	During phase
 Fencing mitigations: Top 2 strands must be smooth wire; Routinely retention loose wires; Minimum 300 mm between wires; Place markers on fences; and Fences must be fitted with bird diverters 	Life of Operation	Project Manager Environme ntal Officer Contractor Design Engineer	Presence of birds stuck /dead in fences Monitor fences for slack wires	During phase
As far as possible power cables within the PAOI should be thoroughly insulated and preferably buried.	Construction and Operation	Project Manager Environme ntal Officer Design Engineer	Exposed cables	During phase
Any exposed parts must be covered (insulated) to reduce electrocution risk	Planning and construction	Environme ntal Officer & Contractor, Engineer	Presence of electrocuted birds	During phase
Post-construction monitoring should follow the BirdLife South Africa best practice guidelines for solar energy facilities (BirdLife South Africa, 2017). If monitoring results indicate excessive bird fatalities, then adaptive mitigations should be implemented. Before implementation, these should be discussed with the avifaunal specialist and ECO and could include the retrofitting/incorporation of additional visual cues/diverters to existing infrastructure. Post construction monitoring must be performed for two years following the construction phase.	Operational	Project Manager Environme ntal Officer Design Engineer	Presence of dead birds in the project site. Monitoring must be undertaken in accordance with the BirdLife South Africa best practice guidelines for solar energy facilities (BirdLife South Africa, 2017). The precise location of any dead birds found should be recorded and mapped (using GPS). All carcasses should be photographed as found then placed in a plastic bag, labelled as to the location and date, and preserved (refrigerated or	During phase. The monitoring frequency is based on the collision rate.

			frozen) until identified. Feather spots (e.g., a group of feathers attached to skin) and body parts should also be collected.	
All infrastructure, must be removed if the facility is decommissioned.	Closure/Rehabilit ation	Project Manager Environme ntal Officer	Infrastructure removal	During Process

6 Monitoring

Post-construction monitoring should follow the BirdLife South Africa best practice guidelines for solar energy facilities (BirdLife South Africa, 2017). If monitoring results indicate excessive bird fatalities, then adaptive mitigations should be implemented. Before implementation, these should be discussed with the avifaunal specialist and ECO and could include the retrofitting/incorporation of additional visual cues/diverters to existing infrastructure. Post construction monitoring must be performed for two years following the construction phase.

7 Conclusion

The aim of this Avifauna Impact Assessment was to provide information to guide the risk of the proposed Overhead Line and BESS facility to the avifauna community likely affected by its development.

Based on the SABAP2 data, 339 avifauna species are expected for the PAOI and surrounds. Of these, 19 are considered SCC, with five species having a moderate likelihood of occurrence. An avifaunal field survey was completed on the 31st of January 2024 for this study, with this assessment deemed to be sufficient. No SCC were observed during the first field survey however, six (6) risk species were recorded. These risk species are susceptible to collisions, electrocutions, and habitat loss.

Four habitats were delineated, namely Agricultural, Grassland, Transformed, and Water resources. Majority of the project area was found to be either medium or very low sensitivity validating the screening tool Medium sensitivity. This rating is based on the resource resilience and the overall disturbed state of the habitat. The collision risk, electrocution risk and loss of habitat are the main impacts, should these be successfully mitigated the overall impact rating can be reduced.

7.1 Impact Statement

The main expected impacts of the proposed Powerline, BESS and associated infrastructure will include the following:

- Habitat loss and fragmentation;
- Electrocutions; and
- Collisions resulting in mortalities of amongst other SCCs.

Mitigation measures, as described in this report, can be implemented to reduce the significance of the risk to an acceptable level. Development may proceed but with caution and only with the implementation of mitigation measures.

7.2 Specialist Opinion

It is the opinion of the specialist that the development can be favourably considered should the mitigation measures and management actions be implemented.

8 References

Bird Atlas Project (SABAP2). (2022). http://vmus.adu.org.za/

BirdLife International. 2021. The IUCN Red List of Threatened Species 2021

Birdlife South Africa (2022). Important Bird and Biodiversity Areas. <u>https://www.birdlife.org.za/what-we-do/important-bird-and-biodiversity-areas/</u>

the

ODIVE

BirdLife South Africa. 2015. Fences & birds, minimising unintended impacts. https://www.birdlife.org.za/what-we-do/landscape-conservation/what-we-do/birds-and-fences/

BirdLife South Africa. 2017. Birds and Solar Energy Best Practice Guidelines. https://www.birdlife.org.za/wp-content/uploads/2020/03/BLSA-Guidelines-Solar-and-Energy.pdf

BirdLife South Africa. (2017). Important Bird Areas Factsheet. http://www.birdlife.org

Buckland, S., Anderson, D., Burnham, K.P. and Laake, J. 1993. Distance Sampling: Estimating Abundance of Biological Populations. 440 pgs., Chapman and Hall, London

Coordinated Avifaunal Roadcounts (CAR) (2020). <u>http://car.birdmap.africa/index.php</u>

Cumming, G.S. & Henry, D.A.W. 2019. Point counts outperform line transects when sampling birds along routes in South African protected areas. African Zoology, 54(4): 187-198. doi: 10.1080/15627020.2019.1658540.

Del Hoyo, J., Collar, N.J., Christie, D.A., Elliott, A., Fishpool, L.D.C., Boesman, P. & Kirwan, G.M. (1996). HBW and BirdLife International Illustrated Checklist of the Birds of the World. Volume 2: Passerines. Lynx Editions and BirdLife International, Barcelona, Spain and Cambridge, UK.

Department of Forestry, Fisheries and the Environment (DFFE). 2023a. SACAD (South Africa Conservation Areas Database) and SAPAD (South Africa Protected Areas Database). http://egis.environment.gov.za.

Department of Forestry, Fisheries and the Environment (DFFE). 2021b. National Protected Areas Expansion Strategy. <u>http://egis.environment.gov.za.</u>

Department of Forestry, Fisheries and the Environment (DFFE). 2021c. Renewable Energy EIA Application Database. <u>http://egis.environment.gov.za.</u>

Taylor, M.R., Peacock, F. & Wanless, R.M. (Eds). 2015. The 2015 Eskom Red Data Book of birds of South Africa, Lesotho and Swaziland. BirdLife South Africa, Johannesburg.

Hockey, P.A.R., Dean, W.R.J. & Ryan, P.G. (Eds). (2005). Roberts – Birds of Southern Africa, VIIth ed. The Trustees of the John Voelcker Bird Book Fund, Cape Town.

Horvath, G., Blaho, M., Egri A., Kriska, G., Seres, I. & Robertson, B. 2010. Reducing the Maladaptive Attractiveness of Solar Panels to Polarotactic Insects Conservation biology 24 (6) 1644-1653

IUCN. (2021). The IUCN Red List of Threatened Species. www.iucnredlist.org

Jenkins, A.R., van Rooyen, C.S., Smallie, J.J., Harrison., J.A., Diamond., M., Smit-Robinson., H.A. & Ralston., S. 2015. Birds and Wind-Energy Best-Practice Guidelines. Birds and Wind-Energy Best-Practice Guidelines.

Lovich, J.E. & Ennen, J.R. 2011. Wildlife conservation and solar energy development in the desert southwest, United States. BioScience 61:982-992.

Prinsen, H.A.M., Smallie, J.J., Boere, G.C. & Píres, N. (Compilers). 2012. Guidelines on How to Avoid or Mitigate Impact of Electricity Power Grids on Migratory Birds in the African-Eurasian Region. AEWA

Conservation Guidelines No. 14, CMS Technical Series No. 29, AEWA Technical Series No. 50, CMS Raptors MOU Technical Series No. 3, Bonn, Germany.

Ralston Paton, S., Smallie J., Pearson A., & Ramalho, R. 2017. Wind energy's impacts on birds in South Africa: A preliminary review of the results of operational monitoring at the first wind farms of the Renewable Energy Independent Power Producer Procurement Programme in South Africa. BirdLife South Africa Occasional Report Series No. 2. BirdLife South Africa, Johannesburg, South Africa

Shaw, J.M., Reid, T.A., Gibbons, B.K., Pretorius, M., Jenkins, A.R., Visagie, R., Michael, M.D. & Ryan, P.G. 2021. A large-scale experiment demonstrates that line marking reduces power line collision mortality for large terrestrial birds, but not bustards, in the Karoo, South Africa. Ornithological Applications, 123: 1-10.

Skowno, A.L., Raimondo, D.C., Poole, C.J., Fizzotti, B. & Slingsby, J.A. (eds.). 2019. South African National Biodiversity Assessment 2018 Technical Report Volume 1: Terrestrial Realm. South African National Biodiversity Institute, Pretoria.

South African National Biodiversity Institute (SANBI). 2016. Lexicon of Biodiversity Planning in South Africa. Beta Version, June 2016. South African National Biodiversity Institute, Pretoria. 72 pp.

South African National Biodiversity Institute (SANBI). 2017. Technical guidelines for CBA Maps: Guidelines for developing a map of Critical Biodiversity Areas & Ecological Support Areas using systematic biodiversity planning. Driver, A., Holness, S. & Daniels, F. (Eds). 1st Edition. South African National Biodiversity Institute, Pretoria.

South African National Biodiversity Institute (SANBI). 2020. Species Environmental Assessment Guideline. Guidelines for the implementation of the Terrestrial Fauna and Terrestrial Flora Species Protocols for environmental impact assessments in South Africa. South African National Biodiversity Institute, Pretoria.

Van Deventer, H., Smith-Adao, L., Mbona, N., Petersen, C., Skowno, A., Collins, N.B., Grenfell, M., Job, N., Lötter, M., Ollis, D., Scherman, P., Sieben, E. & Snaddon, K. 2018. South African National Biodiversity Assessment 2018: Technical Report. Volume 2a: South African Inventory of Inland Aquatic Ecosystems (SAIIAE). Version 3, final released on 3 October 2019. Council for Scientific and Industrial Research (CSIR) and South African National Biodiversity Institute (SANBI): Pretoria, South Africa.

Visser, Elke & Perold, V. & Ralston-Paton, S. & Cardenal, A. C. & Ryan, P.G., 2019. "Assessing the impacts of a utility-scale photovoltaic solar energy facility on birds in the Northern Cape, South Africa," Renewable Energy, Elsevier, vol. 133(C), pages 1285-1294.

9 Appendix Items

9.1 Appendix A: Methodology

9.1.1 Desktop Dataset Assessment

The desktop assessment was principally undertaken using a Geographic Information System (GIS) to access the latest available spatial datasets to develop digital cartographs and species lists. These datasets and their date of publishing are provided below.

9.1.1.1 Expected Species

The avifaunal desktop assessment comprised of the following, compiling an expected species list:

- Avifauna list, generated from the SABAP2 dataset by looking at pentads 2615_2720; 2615_2725; 2615_2730; 2620_2720; 2620_2725; 2620_2730; 2625_2720; 2625_2725; and 2625_2730; and
- Compilation of a Coordinated Water Bird Count (CWAC) species list if the PAOI was found to be in a vicinity of a CWAC site; and
- Compilation of a Coordinated Avifaunal Roadcount (CAR) species list if the PAOI was found to be in a vicinity of a CAR route.

9.1.1.2 Ecologically Important Landscape Features

Existing ecologically relevant data layers were incorporated into a GIS to establish how the proposed project might interact with any ecologically important entities. Emphasis was placed around the following spatial datasets:

- Ecosystem Threat Status (ETS) indicator of an ecosystem's wellbeing, based on the level of change in structure, function or composition. Ecosystem types are categorised as Critically Endangered (CR), Endangered (EN), Vulnerable (VU), Near Threatened (NT) or Least Concern (LC), based on the proportion of the original extent of each ecosystem type that remains in good ecological condition. The revised red list of threatened ecosystems was developed between 2016 and 2021 incorporating the best available information on terrestrial ecosystem extent and condition, pressures and drivers of change. The revised list (known as the Red List of Ecosystems (RLE) 2022) is based on assessments that followed the International Union for Conservation of Nature (IUCN) Red List of Ecosystems Framework (version 1.1) and covers all 456 terrestrial ecosystem types described in South Africa (Mucina and Rutherford 2006; with updates described in Dayaram *et al.*, 2019). The revised list identifies 120 threatened terrestrial ecosystem types (55 Critically Endangered, 51 Endangered and 14 Vulnerable types). The revised list was published in the Government Gazette (Gazette Number 47526, Notice Number 2747) and came into effect on 18 November 2022;
- Ecosystem Protection level (EPL) informs on whether ecosystems are adequately protected or under-protected. Ecosystem types are categorised as Not Protected (NP), Poorly Protected (PP), Moderately Protected (MP) or Well Protected (WP), based on the proportion of each ecosystem type that occurs within a protected area recognised in the Protected Areas Act (Skowno *et al.*, 2019). NP, PP or MP ecosystem types are collectively referred to as underprotected ecosystems.
- Protected areas South Africa Protected Areas Database (SAPAD) (DEA, 2023) The SAPAD Database contains spatial data pertinent to the conservation of South African biodiversity. It includes spatial and attribute information for both formally protected areas and areas that have

less formal protection. SAPAD is updated on a continuous basis and forms the basis for the Register of Protected Areas, which is a legislative requirement under the National Environmental Management: Protected Areas Act, Act 57 of 2003.

- National Protected Areas Expansion Strategy (NPAES) (SANBI, 2018) The NPAES provides spatial information on areas that are suitable for terrestrial ecosystem protection. These focus areas are large, intact and unfragmented and therefore, of high importance for biodiversity, climate resilience and freshwater protection.
- The Gauteng Conservation Plan (Version 3.3) (GDARD, 2014b) classified areas within the province on the basis of its contribution to reach the conservation targets within the province. These areas are classified as Critical Biodiversity Areas (CBAs) and Ecological Support Areas (ESAs) to ensure sustainability in the long term. The CBAs are classified as either 'Irreplaceable' (must be conserved), or 'Important'. Critical Biodiversity Areas (CBAs) are terrestrial and aquatic areas of the landscape that need to be maintained in a natural or near-natural state to ensure the continued existence and functioning of species and ecosystems and the delivery of ecosystem services. Thus, if these areas are not maintained in a natural or near-natural state then biodiversity targets cannot be met.
- Important Bird and Biodiversity Areas (IBAs) (BirdLife South Africa, 2017) IBAs constitute a global network of over 13 500 sites, of which 112 sites are found in South Africa. IBAs are sites of global significance for bird conservation, identified through multi-stakeholder processes using globally standardised, quantitative and scientifically agreed criteria; and
- South African Inventory of Inland Aquatic Ecosystems (SAIIAE) (Van Deventer *et al.*, 2018) A SAIIAE was established during the NBA of 2018. It is a collection of data layers that represent the extent of river and inland wetland ecosystem types and pressures on these systems.

9.1.2 Avifauna Survey

Sampling consisted of standardized point counts as well as random diurnal incidental surveys. Standardised point counts (Buckland *et al*, 1993) were conducted to gather data on the species composition and relative abundance of species within the broad habitat types identified. The standardized point count technique was utilised as it was demonstrated to outperform line routes (Cumming & Henry, 2019). Each point count was run over a 10 min period. The horizontal detection limit was set at 150 m. At each point the observer would document the date, start time, and end time, habitat, numbers of each species, detection method (seen or heard), behaviour (perched or flying) and general notes on habitat and nesting suitability for conservation important species. To supplement the species inventory with cryptic and illusive species that may not be detected during the rigid point count protocol, diurnal and nocturnal incidental searches were conducted. This involved the opportunistic sampling of species between point count periods, random meandering and road cruising. Effort was made to cover all the different habitat types within the limits of time and access.

9.1.2.1 Data Analysis

The analyses described below only used the data collected from the standardised point counts. See Appendix E for the point count raw data.

The analyses described below only used the data collected from the Standardised Point Counts. Raw count data was converted to relative abundance values and used to establish dominant species and calculate the diversity of each habitat. Present, and potentially occurring species were assigned to 13 major trophic guilds loosely based on the classification system developed by González-Salazar *et al.* (2014). Species were first classified by their dominant diet (carnivore, herbivore, granivore, frugivore,

nectarivore, omnivore), then by the medium upon / within which they most frequently forage (ground, water, foliage, air) and lastly by their activity period (nocturnal or diurnal).

9.2 Appendix B: Site Ecological Importance

The different habitat types within the study area were delineated and identified, based on observations during the field assessment, and available satellite imagery. These habitat types were assigned Ecological Importance (EI) categories, based on their ecological integrity, conservation value, the presence of SCC and their ecosystem processes.

SEI is a function of the Biodiversity Importance (BI) of the receptor (e.g., SCC, the vegetation/fauna community or habitat type present on the site) and Receptor Resilience (RR) (its resilience to impacts) as follows.

BI is a function of Conservation Importance (CI) and the Functional Integrity (FI) of the receptor as follows. The criteria for the CI and FI ratings are provided Table 9-1 and, respectively.

Conservation Importance	Fulfilling Criteria
	Confirmed or highly likely occurrence of CR, EN, VU or Extremely Rare or CR species that have a global exter of occurrence (EOO) of < 10 km ² .
Very High	Any area of natural habitat of a CR ecosystem type or large area (> 0.1% of the total ecosystem type extent) o natural habitat of an EN ecosystem type.
	Globally significant populations of congregatory species (> 10% of global population).
	Confirmed or highly likely occurrence of CR, EN, VU species that have a global EOO of > 10 km ² . IUC threatened species (CR, EN, VU) must be listed under any criterion other than A.
llinh	If listed as threatened only under Criterion A, include if there are less than 10 locations or < 10 000 matur individuals remaining.
Hign	Small area (> 0.01% but < 0.1% of the total ecosystem type extent) of natural habitat of EN ecosystem type of large area (> 0.1%) of natural habitat of VU ecosystem type.
	Presence of Rare species.
	Globally significant populations of congregatory species (> 1% but < 10% of global population).
	Confirmed or highly likely occurrence of populations of Near Threatened (NT) species, threatened species (CF EN, VU) listed under Criterion A only and which have more than 10 locations or more than 10 000 matur individuals.
Medium	Any area of natural habitat of threatened ecosystem type with status of VU.
	Presence of range-restricted species.
	> 50% of receptor contains natural habitat with potential to support SCC.
	No confirmed or highly likely populations of SCC.
Low	No confirmed or highly likely populations of range-restricted species.
	< 50% of receptor contains natural habitat with limited potential to support SCC.
	No confirmed and highly unlikely populations of SCC.
Very Low	No confirmed and highly unlikely populations of range-restricted species.
	No natural habitat remaining.

 Table 9-1
 Summary of Conservation Importance (CI) criteria

Table 9-2Summary of Functional Integrity (FI) criteria

Functional Integrity	Fulfilling Criteria
Very High	Very large (> 100 ha) intact area for any conservation status of ecosystem type or > 5 ha for CR ecosystem types. High habitat connectivity serving as functional ecological corridors, limited road network between intact habitat patches.

	No or minimal current negative ecological impacts with no signs of major past disturbance.
High	Large (> 20 ha but < 100 ha) intact area for any conservation status of ecosystem type or > 10 ha for EN ecosystem types. Good habitat connectivity with potentially functional ecological corridors and a regularly used road network between intact habitat patches. Only minor current negative ecological impacts with no signs of major past disturbance and good
	rehabilitation potential. Medium (> 5 ha but < 20 ha) semi-intact area for any conservation status of ecosystem type or > 20
Medium	ha for VU ecosystem types. Only narrow corridors of good habitat connectivity or larger areas of poor habitat connectivity and a busy used road network between intact habitat patches. Mostly minor current negative ecological impacts with some major impacts and a few signs of minor past disturbance. Moderate rehabilitation potential.
Low	Small (> 1 ha but < 5 ha) area. Almost no habitat connectivity but migrations still possible across some modified or degraded natural habitat and a very busy used road network surrounds the area. Low rehabilitation potential. Several minor and major current negative ecological impacts.
Very Low	Very small (< 1 ha) area. No habitat connectivity except for flying species or flora with wind-dispersed seeds. Several major current negative ecological impacts.

BI can be derived from a simple matrix of CI and FI as provided in Table 4 3.

Table 9-3	Matrix used to derive Biodiversity Importance (BI) from Functional Integrity (FI)
	and Conservation Importance (CI)

Biodiversity Importance (BI)		Conservation Importance (CI)					
		Very high	High	Medium	Low	Very low	
	Very high		Very high	High	Medium	Low	
Functional Integrity (FI)	High	Very high	High	Medium	Medium	Low	
	Medium	High	Medium	Medium	Low	Very low	
	Low	Medium	Medium	Low	Low	Very low	
	Very low	Medium	Low	Very low	Very low	Very low	

The fulfilling criteria to evaluate RR are based on the estimated recovery time required to restore an appreciable portion of functionality to the receptor as summarised in Table 4 4.

Table 9-4 Summary of Resource Resilience (RR) criteria

Resilience	Fulfilling Criteria
Very High	Habitat that can recover rapidly (~ less than 5 years) to restore > 75% of the original species composition and functionality of the receptor functionality, or species that have a very high likelihood of remaining at a site even when a disturbance or impact is occurring, or species that have a very high likelihood of returning to a site once the disturbance or impact has been removed.
High	Habitat that can recover relatively quickly (~ 5–10 years) to restore > 75% of the original species composition and functionality of the receptor functionality, or species that have a high likelihood of remaining at a site even when a disturbance or impact is occurring, or species that have a high likelihood of returning to a site once the disturbance or impact has been removed.
Medium	Will recover slowly (~ more than 10 years) to restore > 75% of the original species composition and functionality of the receptor functionality, or species that have a moderate likelihood of remaining at

	a site even when a disturbance or impact is occurring, or species that have a moderate likelihood of returning to a site once the disturbance or impact has been removed.
Low	Habitat that is unlikely to be able to recover fully after a relatively long period: > 15 years required to restore ~ less than 50% of the original species composition and functionality of the receptor functionality, or species that have a low likelihood of remaining at a site even when a disturbance or impact is occurring, or species that have a low likelihood of returning to a site once the disturbance or impact has been removed.
Very Low	Habitat that is unable to recover from major impacts, or species that are unlikely to remain at a site even when a disturbance or impact is occurring, or species that are unlikely to return to a site once the disturbance or impact has been removed.

Subsequent to the determination of the BI and RR, the SEI can be ascertained using the matrix as provided in Table 4 5.

Table 9-5Matrix used to derive Site Ecological Importance (SEI) from Receptor Resilience
(RR) and Biodiversity Importance (BI)

Site Ecological Importance (SEI)		Biodiversity Importance (BI)				
		Very high	High	Medium	Low	Very low
(Very Low	Very high	Very high	High	Medium	Low
Receptor esilience (RR	Low	Very high	Very high	High	Medium	Very low
	Medium	Very high	High	Medium	Low	Very low
	High	High	Medium	Low	Very low	Very low
Ľ.	Very High	Medium	Low	Very low	Very low	Very low

Interpretation of the SEI in the context of the proposed development activities is provided in Table 4 6.

Table 9-6Guidelines for interpreting Site Ecological Importance (SEI) in the context of the
proposed development activities

Site Ecological Importance (SEI)	Interpretation in relation to proposed development activities
Very High	Avoidance mitigation – no destructive development activities should be considered. Offset mitigation not acceptable/not possible (i.e., last remaining populations of species, last remaining good condition patches of ecosystems/unique species assemblages). Destructive impacts for species/ecosystems where persistence target remains.
High	Avoidance mitigation wherever possible. Minimisation mitigation – changes to project infrastructure design to limit the amount of habitat impacted, limited development activities of low impact acceptable. Offset mitigation may be required for high impact activities.
Medium	Minimisation and restoration mitigation – development activities of medium impact acceptable followed by appropriate restoration activities.
Low	Minimisation and restoration mitigation – development activities of medium to high impact acceptable followed by appropriate restoration activities.
Very Low	Minimisation mitigation – development activities of medium to high impact acceptable and restoration activities may not be required.

The SEI evaluated for each taxon can be combined into a single multi-taxon evaluation of SEI for the assessment area. Either a combination of the maximum SEI for each receptor should be applied, or the SEI may be evaluated only once per receptor but for all necessary taxa simultaneously. For the latter, justification of the SEI for each receptor is based on the criteria that conforms to the highest CI and FI, and the lowest RR across all taxa.

9.3 Appendix C: Impact Assessment Significance Rating

Impact assessment must take account of the nature, scale, and duration of impacts on the environment whether such impacts are positive or negative. Each impact is also assessed according to the project phases:

- Construction;
- Operation; and
- Decommissioning.

Where necessary, the proposal for mitigation or optimisation of an impact should be detailed. A brief discussion of the impact and the rationale behind the assessment of its significance should also be included. The rating system is applied to the potential impacts on the receiving environment and includes an objective evaluation of the mitigation of the impact. In assessing the significance of each impact. This assessment is available upon request.

Scientific Name	Common Name	Family Name	Region al	Global (IUCN)	Endemism in South Africa (E)
Ciconia abdimii	Abdim's Stork	Ciconiidae	NT	LC	
Tricholaema leucomelas	Acacia Pied Barbet	Lybiidae	Unlisted	Unlisted	
Crecopsis egregia	African Crake	Rallidae	Unlisted	Unlisted	
Aviceda cuculoides	African Cuckoo Hawk	Accipitridae	Unlisted	Unlisted	
Anhinga rufa	African Darter	Anhingidae	Unlisted	Unlisted	
Lagonosticta rubricata	African Firefinch	Estriididae	Unlisted	Unlisted	
Polyboroides typus	African Harrier-Hawk	Accipitridae	Unlisted	Unlisted	
Aquila spilogaster	African Hawk Eagle	Accipitridae	Unlisted	Unlisted	
Upupa africana	African Hoopoe	Upupidae	Unlisted	Unlisted	
Actophilornis africanus	African Jacana	Jacanidae	Unlisted	Unlisted	
Anthus cinnamomeus	African Pipit	Motacillidae	Unlisted	Unlisted	
Rallus caerulescens	African Rail	Rallidae	Unlisted	Unlisted	
Gallinago nigripennis	African Snipe	Scolopacidae	Unlisted	Unlisted	
Platalea alba	African Spoonbill	Threskiornithida e	Unlisted	Unlisted	
Saxicola torquatus	African Stonechat	Muscicapidae	Unlisted	Unlisted	
Porphyrio madagascariensis	African Swamphen	Rallidae	Unlisted	Unlisted	
Anas sparsa	African Black Duck	Anatidae	Unlisted	Unlisted	
Apus barbatus	African Black Swift	Apodidae	Unlisted	Unlisted	
Haliaeetus vocifer	African Fish Eagle	Accipitridae	Unlisted	Unlisted	
Tyto capensis	African Grass Owl	Strigidae	VU	LC	
Treron calvus	African Green Pigeon	Columbidae	Unlisted	Unlisted	
Lophoceros nasutus	African Grey Hornbill	Bucerotidae	Unlisted	Unlisted	
Circus ranivorus	African Marsh Harrier	Accipitridae	EN	LC	
Columba arquatrix	African Olive Pigeon	Columbidae	Unlisted	Unlisted	

9.4 Appendix D: Expected Avifaunal Species

Avifauna Theme

Cypsiurus parvus	African Palm Swift	Apodidae	Unlisted	Unlisted	
Terpsiphone viridis	African Paradise Flycatcher	Monarchidae	Unlisted	Unlisted	
Pycnonotus nigricans	African Red-eyed Bulbul	Pycnonotidae	Unlisted	Unlisted	
Threskiornis aethiopicus	African Sacred Ibis	Threskiornithida e	Unlisted	Unlisted	
Vanellus senegallus	African Wattled Lapwing	Charadriidae	Unlisted	Unlisted	
Tachymarptis melba	Alpine Swift	Apodidae	Unlisted	Unlisted	
Chalcomitra amethystina	Amethyst Sunbird	Nectariniidae	Unlisted	Unlisted	
Falco amurensis	Amur Falcon	Falconidae	Unlisted	Unlisted	
Myrmecocichla formicivora	Ant-eating Chat	Muscicapidae	Unlisted	Unlisted	
Turdoides jardineii	Arrow-marked Babbler	Leiothrichidae	Unlisted	Unlisted	
Melaniparus cinerascens	Ashy Tit	Paridae	Unlisted	Unlisted	
Riparia cincta	Banded Martin	Hirundinidae	Unlisted	Unlisted	
Hirundo rustica	Barn Swallow	Hirundinidae	Unlisted	Unlisted	
Apalis thoracica	Bar-throated Apalis	Cisticolidae	Unlisted	Unlisted	
Zapornia flavirostra	Black Crake	Rallidae	Unlisted	Unlisted	
Cuculus clamosus	Black Cuckoo	Cuculidae	Unlisted	Unlisted	
Circus maurus	Black Harrier	Accipitridae	EN	EN	NE
Egretta ardesiaca	Black Heron	Ardeidae	Unlisted	Unlisted	
Accipiter melanoleucus	Black Sparrowhawk	Accipitridae	Unlisted	Unlisted	
Dryoscopus cubla	Black-backed Puffback	Malaconotidae	Unlisted	Unlisted	
Prinia flavicans	Black-chested Prinia	Cisticolidae	Unlisted	Unlisted	
Circaetus pectoralis	Black-chested Snake Eagle	Accipitridae	Unlisted	Unlisted	
Lybius torquatus	Black-collared Barbet	Lybiidae	Unlisted	Unlisted	
Tchagra senegalus	Black-crowned Tchagra	Malaconotidae	Unlisted	Unlisted	
Nycticorax nycticorax	Black-crowned Night Heron	Ardeidae	Unlisted	Unlisted	
Brunhilda erythronotos	Black-faced Waxbill	Estrildidae	Unlisted	Unlisted	
Ardea melanocephala	Black-headed Heron	Ardeidae	Unlisted	Unlisted	
Oriolus larvatus	Black-headed Oriole	Oriolidae	Unlisted	Unlisted	
Vanellus armatus	Blacksmith Lapwing	Charadriidae	Unlisted	Unlisted	
Crithagra atrogularis	Black-throated Canary	Fringillidae	Unlisted	Unlisted	
Elanus caeruleus	Black-winged Kite	Accipitridae	Unlisted	Unlisted	
Glareola nordmanni	Black-winged Pratincole	Glareolidae	NT	NT	
Himantopus himantopus	Black-winged Stilt	Recurvirostridae	Unlisted	Unlisted	
Uraeginthus angolensis	Blue Waxbill	Estrildidae	Unlisted	Unlisted	
Spatula hottentota	Blue-billed Teal	Anatidae	Unlisted	Unlisted	
Telophorus zeylonus	Bokmakierie	Malaconotidae	Unlisted	Unlisted	
Hieraaetus pennatus	Booted Eagle	Accipitridae	Unlisted	Unlisted	
Spermestes cucullata	Bronze Mannikin	Estrildidae	Unlisted	Unlisted	
Circaetus cinereus	Brown Snake Eagle	Accipitridae	Unlisted	Unlisted	
Prodotiscus regulus	Brown-backed Honeybird	Indicatoridae	Unlisted	Unlisted	

Tchagra australis	Brown-crowned Tchagra	Malaconotidae	Unlisted	Unlisted	
Halcyon albiventris	Brown-hooded Kingfisher	Alcedinidae	Unlisted	Unlisted	
Riparia paludicola	Brown-throated Martin	Hirundinidae	Unlisted	Unlisted	
Nilaus afer	Brubru	Malaconotidae	Unlisted	Unlisted	
Anthus vaalensis	Buffy Pipit	Motacillidae	Unlisted	Unlisted	
Centropus burchellii	Burchell's Coucal	Cuculidae	Unlisted	Unlisted	
Emberiza capensis	Cape Bunting	Emberizidae	Unlisted	Unlisted	
Sphenoeacus afer	Cape Grassbird	Macrosphenidae	Unlisted	Unlisted	NE
Macronyx capensis	Cape Longclaw	Motacillidae	Unlisted	Unlisted	
Cossypha caffra	Cape Robin-Chat	Muscicapidae	Unlisted	Unlisted	
Spatula smithii	Cape Shoveler	Anatidae	Unlisted	Unlisted	
Passer melanurus	Cape Sparrow	Passeridae	Unlisted	Unlisted	
Lamprotornis nitens	Cape Starling	Sturnidae	Unlisted	Unlisted	
Anas capensis	Cape Teal	Anatidae	Unlisted	Unlisted	
Gyps coprotheres	Cape Vulture	Accipitridae	EN	VU	
Motacilla capensis	Cape Wagtail	Motacillidae	Unlisted	Unlisted	
Ploceus capensis	Cape Weaver	Ploceidae	Unlisted	Unlisted	NE
Zosterops virens	Cape White-eye	Zosteropidae	Unlisted	Unlisted	NE
Anthoscopus minutus	Cape Penduline Tit	Remizidae	Unlisted	Unlisted	
Oenanthe pileata	Capped Wheatear	Muscicapidae	Unlisted	Unlisted	
Dendropicos fuscescens	Cardinal Woodpecker	Picidae	Unlisted	Unlisted	
Hydropogne caspia	Caspian Tern	Laridae	VU	LC	
Eremopterix leucotis	Chestnut-backed Sparrow- Lark	Alaudidae	Unlisted	Unlisted	
Curruca subcoerulea	Chestnut-vented Warbler	Sylviidae	Unlisted	Unlisted	
Batis molitor	Chinspot Batis	Platysteiridae	Unlisted	Unlisted	
Emberiza tahapisi	Cinnamon-breasted Bunting	Emberizidae	Unlisted	Unlisted	
Cisticola textrix	Cloud Cisticola	Cisticolidae	Unlisted	Unlisted	NE
Buteo buteo	Common Buzzard	Accipitridae	Unlisted	Unlisted	
Tringa nebularia	Common Greenshank	Pycnonotidae	Unlisted	Unlisted	
Gallinula chloropus	Common Moorhen	Rallidae	Unlisted	Unlisted	
Acridotheres tristis	Common Myna	Sturnidae	Unlisted	Unlisted	
Struthio camelus	Common Ostrich	Struthionidae	Unlisted	Unlisted	
Coturnix coturnix	Common Quail	Phasianidae	Unlisted	Unlisted	
Actitis hypoleucos	Common Sandpiper	Scolopacidae	Unlisted	Unlisted	
Rhinopomastus cyanomelas	Common Scimitarbill	Phoeniculidae	Unlisted	Unlisted	
Apus apus	Common Swift	Apodidae	Unlisted	Unlisted	
Estrilda astrild	Common Waxbill	Estrildidae	Unlisted	Unlisted	
Curruca communis	Common Whitethroat	Sylviidae	Unlisted	Unlisted	
Delichon urbicum	Common House Martin	Hirundinidae	Unlisted	Unlisted	
Acrocephalus baeticatus	Common Reed Warbler	Acrocephalidae	Unlisted	Unlisted	

Acrocephalus baeticatus	Common Reed Warbler	Acrocephalidae	Unlisted	Unlisted	
Charadrius hiaticula	Common Ringed Plover	Charadriidae	Unlisted	Unlisted	
Peliperdix coqui	Coqui Francolin	Phasianidae	Unlisted	Unlisted	
Crex crex	Corn Crake	Rallidae	Unlisted	Unlisted	
Trachyphonus vaillantii	Crested Barbet	Lybiidae	Unlisted	Unlisted	
Dendroperdix sephaena	Crested Francolin	Phasianidae	Unlisted	Unlisted	
Laniarius atrococcineus	Crimson-breasted Shrike	Malaconotidae	Unlisted	Unlisted	
Vanellus coronatus	Crowned Lapwing	Charadriidae	Unlisted	Unlisted	
Anomalospiza imberbis	Cuckoo Finch	Viduidae	Unlisted	Unlisted	
Calidris ferruginea	Curlew Sandpiper	Scolopacidae	LC	NT	
Amadina fasciata	Cut-throat Finch	Estriididae	Unlisted	Unlisted	
Pycnonotus tricolor	Dark-capped Bulbul	Pycnonotidae	Unlisted	Unlisted	
lduna natalensis	Dark-capped Yellow Warbler	Acrocephalidae	Unlisted	Unlisted	
Cisticola aridulus	Desert Cisticola	Cisticolidae	Unlisted	Unlisted	
Chrysococcyx caprius	Diederik Cuckoo	Cuculidae	Unlisted	Unlisted	
Vidua funerea	Dusky Indigobird	Viduidae	Unlisted	Unlisted	
Mirafra fasciolata	Eastern Clapper Lark	Alaudidae	Unlisted	Unlisted	
Certhilauda semitorquata	Eastern Long-billed Lark	Alaudidae	Unlisted	Unlisted	SLS
Alopochen aegyptiaca	Egyptian Goose	Anatidae	Unlisted	Unlisted	
Merops apiaster	European Bee-eater	Meropidae	Unlisted	Unlisted	
Pernis apivorus	European Honey Buzzard	Accipitridae	Unlisted	Unlisted	
Stenostira scita	Fairy Flycatcher	Muscicapidae	Unlisted	Unlisted	NE
Oenanthe familiaris	Familiar Chat	Muscicapidae	Unlisted	Unlisted	
Caprimulgus pectoralis	Fiery-necked Nightjar	Caprimulgidae	Unlisted	Unlisted	
Melaenornis silens	Fiscal Flycatcher	Muscicapidae	Unlisted	Unlisted	NE
Dicrurus adsimilis	Fork-tailed Drongo	Dicruridae	Unlisted	Unlisted	
Dendrocygna bicolor	Fulvous Whistling Duck	Anatidae	Unlisted	Unlisted	
Micronisus gabar	Gabar Goshawk	Accipitridae	Unlisted	Unlisted	
Sylvia borin	Garden Warbler	Sylviidae	Unlisted	Unlisted	
Megaceryle maxima	Giant Kingfisher	Alcedinidae	Unlisted	Unlisted	
Plegadis falcinellus	Glossy Ibis	Threskiornithida e	Unlisted	Unlisted	
Emberiza flaviventris	Golden-breasted Bunting	Emberizidae	Unlisted	Unlisted	
Campethera abingoni	Golden-tailed Woodpecker	Picidae	Unlisted	Unlisted	
Ardea goliath	Goliath Heron	Ardeidae	Unlisted	Unlisted	
Ardea alba	Great Egret	Ardeidae	Unlisted	Unlisted	
Podiceps cristatus	Great Crested Grebe	Podicipedidae	Unlisted	Unlisted	
Acrocephalus arundinaceus	Great Reed Warbler	Acrocephalidae	Unlisted	Unlisted	
Clamator glandarius	Great Spotted Cuckoo	Cuculidae	Unlisted	Unlisted	
Phoenicopterus roseus	Greater Flamingo	Phoenicopterida e	NT	LC	
Indicator indicator	Greater Honeyguide	Indicatoridae	Unlisted	Unlisted	

Avifauna Theme

Falco rupicoloides	Greater Kestrel	Falconidae	Unlisted	Unlisted	
Cinnyris afer	Greater Double-collared Sunbird	Nectariniidae	Unlisted	Unlisted	SLS
Cecropis cucullata	Greater Striped Swallow	Hirundinidae	Unlisted	Unlisted	
Phoeniculus purpureus	Green Wood Hoopoe	Phoeniculidae	Unlisted	Unlisted	
Pytilia melba	Green-winged Pytilia	Estrildidae	Unlisted	Unlisted	
Corythaixoides concolor	Grey Go-away-bird	Musophagidae	Unlisted	Unlisted	
Ardea cinerea	Grey Heron	Ardeidae	Unlisted	Unlisted	
Eremopterix verticalis	Grey-backed Sparrow-Lark	Alaudidae	Unlisted	Unlisted	
Malaconotus blanchoti	Grey-headed Bush-shrike	Malaconotidae	Unlisted	Unlisted	
Chroicocephalus cirrocephalus	Grey-headed Gull	Laridae	Unlisted	Unlisted	
Turdus litsitsirupa	Groundscraper Thrush	Turdidae	Unlisted	Unlisted	
Bostrychia hagedash	Hadada Ibis	Threskiornithida e	Unlisted	Unlisted	
Alcedo semitorquata	Half-collared Kingfisher	Alcedinidae	NT	LC	
Scopus umbretta	Hamerkop	Scopidae	Unlisted	Unlisted	
Numida meleagris	Helmeted Guineafowl	Numididae	Unlisted	Unlisted	
Apus horus	Horus Swift	Apodidae	Unlisted	Unlisted	
Passer domesticus	House Sparrow	Passeridae	Unlisted	Unlisted	
Hippolais icterina	Icterine Warbler	Acrocephalidae	Unlisted	Unlisted	
Pavo cristatus	Indian Peafowl	Phasianidae	Unlisted	Unlisted	
Buteo rufofuscus	Jackal Buzzard	Accipitridae	Unlisted	Unlisted	NE
Clamator jacobinus	Jacobin Cuckoo	Cuculidae	Unlisted	Unlisted	
Lagonosticta rhodopareia	Jameson's Firefinch	Estriididae	Unlisted	Unlisted	
Cercotrichas paena	Kalahari Scrub Robin	Muscicapidae	Unlisted	Unlisted	
Turdus smithi	Karoo Thrush	Turdidae	Unlisted	Unlisted	NE
Charadrius pecuarius	Kittlitz's Plover	Charadriidae	Unlisted	Unlisted	
Chrysococcyx klaas	Klaas's Cuckoo	Cuculidae	Unlisted	Unlisted	
Sarkidiornis melanotos	Knob-billed Duck	Anatidae	Unlisted	Unlisted	
Turnix sylvaticus	Kurrichane Buttonquail	Turnicidae	Unlisted	Unlisted	
Turdus libonyana	Kurrichane Thrush	Turdidae	Unlisted	Unlisted	
Falco biarmicus	Lanner Falcon	Falconidae	VU	LC	
Emberiza impetuani	Lark-like Bunting	Emberizidae	Unlisted	Unlisted	
Spilopelia senegalensis	Laughing Dove	Columbidae	Unlisted	Unlisted	
Cisticola aberrans	Lazy Cisticola	Cisticolidae	Unlisted	Unlisted	
Phoeniconaias minor	Lesser Flamingo	Phoenicopterida e	NT	NT	
Indicator minor	Lesser Honeyguide	Indicatoridae	Unlisted	Unlisted	
Falco naumanni	Lesser Kestrel	Falconidae	Unlisted	Unlisted	
Lanius minor	Lesser Grey Shrike	Laniidae	Unlisted	Unlisted	
Cecropis abyssinica	Lesser Striped Swallow	Hirundinidae	Unlisted	Unlisted	
Acrocephalus gracilirostris	Lesser Swamp Warbler	Acrocephalidae	Unlisted	Unlisted	

NE

Cisticola tinniens	Levaillant's Cisticola	Cisticolidae	Unlisted	Unlisted
Coracias caudatus	Lilac-breasted Roller	Coraciidae	Unlisted	Unlisted
Merops pusillus	Little Bee-eater	Meropidae	Unlisted	Unlisted
Ixobrychus minutus	Little Bittern	Ardeidae	Unlisted	Unlisted
Egretta garzetta	Little Egret	Ardeidae	Unlisted	Unlisted
Tachybaptus ruficollis	Little Grebe	Podicipedidae	Unlisted	Unlisted
Accipiter minullus	Little Sparrowhawk	Accipitridae	Unlisted	Unlisted
Calidris minuta	Little Stint	Scolopacidae	Unlisted	Unlisted
Apus affinis	Little Swift	Apodidae	Unlisted	Unlisted
Bradypterus baboecala	Little Rush Warbler	Locustellidae	Unlisted	Unlisted
Sylvietta rufescens	Long-billed Crombec	Macrosphenidae	Unlisted	Unlisted
Lophaetus occipitalis	Long-crested Eagle	Accipitridae	Unlisted	Unlisted
Euplectes progne	Long-tailed Widowbird	Ploceidae	Unlisted	Unlisted
Vidua paradisaea	Long-tailed Paradise Whydah	Viduidae	Unlisted	Unlisted
Oxyura maccoa	Maccoa Duck	Anatidae	NT	EN
Corythornis cristatus	Malachite Kingfisher	Alcedinidae	Unlisted	Unlisted
Nectarinia famosa	Malachite Sunbird	Nectariniidae	Unlisted	Unlisted
Anas platyrhynchos	Mallard	Anatidae	Unlisted	Unlisted
Melaenornis mariquensis	Marico Flycatcher	Muscicapidae	Unlisted	Unlisted
Cinnyris mariquensis	Marico Sunbird	Nectariniidae	Unlisted	Unlisted
Asio capensis	Marsh Owl	Strigidae	Unlisted	Unlisted
Tringa stagnatilis	Marsh Sandpiper	Scolopacidae	Unlisted	Unlisted
Acrocephalus palustris	Marsh Warbler	Acrocephalidae	Unlisted	Unlisted
Mirafra cheniana	Melodious Lark	Alaudidae	Unlisted	Unlisted
Thamnolaea cinnamomeiventris	Mocking Cliff Chat	Muscicapidae	Unlisted	Unlisted
Circus pygargus	Montagu's Harrier	Accipitridae	Unlisted	Unlisted
Myrmecocichla monticola	Mountain Wheatear	Muscicapidae	Unlisted	Unlisted
Oena capensis	Namaqua Dove	Columbidae	Unlisted	Unlisted
Pterocles namaqua	Namaqua Sandgrouse	Pteroclidae	Unlisted	Unlisted
Pternistis natalensis	Natal Spurfowl	Phasianidae	Unlisted	Unlisted
Cisticola fulvicapilla	Neddicky	Cisticolidae	Unlisted	Unlisted
Anthus nicholsoni	Nicholson's Pipit	Motacillidae	Unlisted	Unlisted
Afrotis afraoides	Northern Black Korhaan	Otididae	Unlisted	Unlisted
Scleroptila gutturalis	Orange River Francolin	Phasianidae	Unlisted	Unlisted
Zosterops pallidus	Orange River White-eye	Zosteropidae	Unlisted	Unlisted
Chlorophoneus sulfureopectus	Orange-breasted Bush-shrike	Malaconotidae	Unlisted	Unlisted
Amandava subflava	Orange-breasted Waxbill	Estrildidae	Unlisted	Unlisted
Accipiter ovampensis	Ovambo Sparrowhawk	Accipitridae	Unlisted	Unlisted
Melierax canorus	Pale Chanting Goshawk	Accipitridae	Unlisted	Unlisted
Circus macrourus	Pallid Harrier	Accipitridae	NT	NT

Hirundo dimidiata	Pearl-breasted Swallow	Hirundinidae	Unlisted	Unlisted	
Falco peregrinus	Peregrine Falcon	Falconidae	Unlisted	Unlisted	
Recurvirostra avosetta	Pied Avocet	Recurvirostridae	Unlisted	Unlisted	
Corvus albus	Pied Crow	Corvidae	Unlisted	Unlisted	
Ceryle rudis	Pied Kingfisher	Alcedinidae	Unlisted	Unlisted	
Lamprotornis bicolor	Pied Starling	Sturnidae	Unlisted	Unlisted	SLS
Spizocorys conirostris	Pink-billed Lark	Alaudidae	Unlisted	Unlisted	
Vidua macroura	Pin-tailed Whydah	Viduidae	Unlisted	Unlisted	
Anthus leucophrys	Plain-backed Pipit	Motacillidae	Unlisted	Unlisted	
Batis pririt	Pririt Batis	Platysteiridae	Unlisted	Unlisted	
Ardea purpurea	Purple Heron	Ardeidae	Unlisted	Unlisted	
Vidua purpurascens	Purple Indigobird	Viduidae	Unlisted	Unlisted	
Coracias naevius	Purple Roller	Coraciidae	Unlisted	Unlisted	
Ortygospiza atricollis	Quailfinch	Estrildidae	Unlisted	Unlisted	
Cisticola chiniana	Rattling Cisticola	Cisticolidae	Unlisted	Unlisted	
Lanius collurio	Red-backed Shrike	Laniidae	Unlisted	Unlisted	
Lagonosticta senegala	Red-billed Firefinch	Estriididae	Unlisted	Unlisted	
Quelea quelea	Red-billed Quelea	Ploceidae	Unlisted	Unlisted	
Anas erythrorhyncha	Red-billed Teal	Anatidae	Unlisted	Unlisted	
Cecropis semirufa	Red-breasted Swallow	Hirundinidae	Unlisted	Unlisted	
Calandrella cinerea	Red-capped Lark	Alaudidae	Unlisted	Unlisted	
Cuculus solitarius	Red-chested Cuckoo	Cuculidae	Unlisted	Unlisted	
Sarothrura rufa	Red-chested Flufftail	Sarothruridae	Unlisted	Unlisted	
Euplectes ardens	Red-collared Widowbird	Ploceidae	Unlisted	Unlisted	
Streptopelia semitorquata	Red-eyed Dove	Columbidae	Unlisted	Unlisted	
Urocolius indicus	Red-faced Mousebird	Coliidae	Unlisted	Unlisted	
Falco vespertinus	Red-footed Falcon	Falconidae	NT	VU	
Amadina erythrocephala	Red-headed Finch	Estriididae	Unlisted	Unlisted	
Fulica cristata	Red-knobbed Coot	Rallidae	Unlisted	Unlisted	
Jynx ruficollis	Red-throated Wryneck	Picidae	Unlisted	Unlisted	
Onychognathus morio	Red-winged Starling	Sturnidae	Unlisted	Unlisted	
Microcarbo africanus	Reed Cormorant	Phalacrocoracid ae	Unlisted	Unlisted	
Streptopelia capicola	Ring-necked Dove	Columbidae	Unlisted	Unlisted	
Columba livia	Rock Dove	Columbidae	Unlisted	Unlisted	
Falco rupicolus	Rock Kestrel	Falconidae	Unlisted	Unlisted	
Ptyonoprogne fuligula	Rock Martin	Hirundinidae	Unlisted	Unlisted	
Psittacula krameri	Rose-ringed Parakeet	Psittaculidae	Unlisted	Unlisted	
Calidris pugnax	Ruff	Scolopacidae	Unlisted	Unlisted	
Caprimulgus rufigena	Rufous-cheeked Nightjar	Caprimulgidae	Unlisted	Unlisted	
Mirafra africana	Rufous-naped Lark	Alaudidae	Unlisted	Unlisted	

Calendulauda sabota	Sabota Lark	Alaudidae	Unlisted	Unlisted	
Riparia riparia	Sand Martin	Hirundinidae	Unlisted	Unlisted	
Sporopipes squamifrons	Scaly-feathered Weaver	Ploceidae	Unlisted	Unlisted	
Sagittarius serpentarius	Secretarybird	Sagittariidae	VU	EN	
Acrocephalus schoenobaenus	Sedge Warbler	Acrocephalidae	Unlisted	Unlisted	
Monticola explorator	Sentinel Rock Thrush	Muscicapidae	LC	NT	SLS
Vidua regia	Shaft-tailed Whydah	Viduidae	Unlisted	Unlisted	
Accipiter badius	Shikra	Accipitridae	Unlisted	Unlisted	
Monticola brevipes	Short-toed Rock Thrush	Muscicapidae	Unlisted	Unlisted	
Emarginata sinuata	Sickle-winged Chat	Muscicapidae	Unlisted	Unlisted	NE
Tadorna cana	South African Shelduck	Anatidae	Unlisted	Unlisted	
Petrochelidon spilodera	South African Cliff Swallow	Hirundinidae	Unlisted	Unlisted	BNE
Laniarius ferrugineus	Southern Boubou	Malaconotidae	Unlisted	Unlisted	
Lanius collaris	Southern Fiscal	Laniidae	Unlisted	Unlisted	
Netta erythrophthalma	Southern Pochard	Anatidae	Unlisted	Unlisted	
Passer diffusus	Southern Grey-headed Sparrow	Passeridae	Unlisted	Unlisted	
Ploceus velatus	Southern Masked Weaver	Ploceidae	Unlisted	Unlisted	
Turdoides bicolor	Southern Pied Babbler	Leiothrichidae	Unlisted	Unlisted	
Euplectes orix	Southern Red Bishop	Ploceidae	Unlisted	Unlisted	
Colius striatus	Speckled Mousebird	Coliidae	Unlisted	Unlisted	
Columba guinea	Speckled Pigeon	Columbidae	Unlisted	Unlisted	
Chersomanes albofasciata	Spike-heeled Lark	Alaudidae	Unlisted	Unlisted	
Bubo africanus	Spotted Eagle-Owl	Strigidae	Unlisted	Unlisted	
Muscicapa striata	Spotted Flycatcher	Muscicapidae	Unlisted	Unlisted	
Burhinus capensis	Spotted Thick-knee	Burhinidae	Unlisted	Unlisted	
Plectropterus gambensis	Spur-winged Goose	Anatidae	Unlisted	Unlisted	
Ardeola ralloides	Squacco Heron	Ardeidae	Unlisted	Unlisted	
Crithagra gularis	Streaky-headed Seedeater	Fringillidae	Unlisted	Unlisted	
Butorides striata	Striated Heron	Ardeidae	Unlisted	Unlisted	
Anthus lineiventris	Striped Pipit	Motacillidae	Unlisted	Unlisted	
Pternistis swainsonii	Swainson's Spurfowl	Phasianidae	Unlisted	Unlisted	
Merops hirundineus	Swallow-tailed Bee-eater	Meropidae	Unlisted	Unlisted	
Prinia subflava	Tawny-flanked Prinia	Cisticolidae	Unlisted	Unlisted	
Cursorius temminckii	Temminck's Courser	Glareolidae	Unlisted	Unlisted	
Amblyospiza albifrons	Thick-billed Weaver	Ploceidae	Unlisted	Unlisted	
Charadrius tricollaris	Three-banded Plover	Charadriidae	Unlisted	Unlisted	
Aquila verreauxii	Verreaux's Eagle	Accipitridae	NA	LC	
Vidua chalybeata	Village Indigobird	Viduidae	Unlisted	Unlisted	
Ploceus cucullatus	Village Weaver	Ploceidae	Unlisted	Unlisted	
Cinnyricinclus leucogaster	Violet-backed Starling	Sturnidae	Unlisted	Unlisted	

Granatina granatina	Violet-eared Waxbill	Estrildidae	Unlisted	Unlisted
Cisticola lais	Wailing Cisticola	Cisticolidae	Unlisted	Unlisted
Creatophora cinerea	Wattled Starling	Sturnidae	Unlisted	Unlisted
Pandion haliaetus	Western Osprey	Pandionidae	Unlisted	Unlisted
Tyto alba	Western Barn Owl	Strigidae	Unlisted	Unlisted
Bubulcus ibis	Western Cattle Egret	Ardeidae	Unlisted	Unlisted
Circus aeruginosus	Western Marsh Harrier	Accipitridae	Unlisted	Unlisted
Motacilla flava	Western Yellow Wagtail	Motacillidae	Unlisted	Unlisted
Chlidonias hybrida	Whiskered Tern	Laridae	Unlisted	Unlisted
Ciconia ciconia	White Stork	Ciconiidae	Unlisted	Unlisted
Thalassornis leuconotus	White-backed Duck	Anatidae	Unlisted	Unlisted
Colius colius	White-backed Mousebird	Coliidae	Unlisted	Unlisted
Gyps africanus	White-backed Vulture	Accipitridae	CR	CR
Cinnyris talatala	White-bellied Sunbird	Nectariniidae	Unlisted	Unlisted
Phalacrocorax lucidus	White-breasted Cormorant	Phalacrocoracid ae	Unlisted	Unlisted
Plocepasser mahali	White-browed Sparrow- Weaver	Ploceidae	Unlisted	Unlisted
Dendrocygna viduata	White-faced Whistling Duck	Anatidae	Unlisted	Unlisted
Merops bullockoides	White-fronted Bee-eater	Meropidae	Unlisted	Unlisted
Apus caffer	White-rumped Swift	Apodidae	Unlisted	Unlisted
Cossypha humeralis	White-throated Robin-Chat	Muscicapidae	Unlisted	Unlisted
Hirundo albigularis	White-throated Swallow	Hirundinidae	Unlisted	Unlisted
Chlidonias leucopterus	White-winged Tern	Laridae	Unlisted	Unlisted
Euplectes albonotatus	White-winged Widowbird	Ploceidae	Unlisted	Unlisted
Phylloscopus trochilus	Willow Warbler	Phylloscopidae	Unlisted	Unlisted
Cisticola ayresii	Wing-snapping Cisticola	Cisticolidae	Unlisted	Unlisted
Tringa glareola	Wood Sandpiper	Scolopacidae	Unlisted	Unlisted
Crithagra flaviventris	Yellow Canary	Fringillidae	Unlisted	Unlisted
Eremomela icteropygialis	Yellow-bellied Eremomela	Cisticolidae	Unlisted	Unlisted
Anas undulata	Yellow-billed Duck	Anatidae	Unlisted	Unlisted
Ardea intermedia	Yellow-billed Egret	Cisticolidae	Unlisted	Unlisted
Milvus aegyptius	Yellow-billed Kite	Accipitridae	Unlisted	Unlisted
Mycteria ibis	Yellow-billed Stork	Ciconiidae	EN	LC
Euplectes afer	Yellow-crowned Bishop	Ploceidae	Unlisted	Unlisted
Crithagra mozambica	Yellow-fronted Canary	Fringillidae	Unlisted	Unlisted
Gymnoris superciliaris	Yellow-throated Bush Sparrow	Passeridae	Unlisted	Unlisted
Cisticola juncidis	Zitting Cisticola	Cisticolidae	Unlisted	Unlisted

9.5 Appendix E: Point Count Data

Common Name	Scientific Name	Family Name	Relative abundance	Frequency (%)
Southern Red Bishop	Euplectes orix	Ploceidae	0.208	23.077

Red-billed Quelea	Quelea quelea	Ploceidae	0.160	7.692
Desert Cisticola	Cisticola aridulus	Cisticolidae	0.061	84.615
Eastern Clapper Lark	Mirafra fasciolata	Alaudidae	0.048	53.846
Rufous-naped Lark	Mirafra africana	Alaudidae	0.048	76.923
Cloud Cisticola	Cisticola textrix	Cisticolidae	0.042	69.231
Southern Masked Weaver	Ploceus velatus	Ploceidae	0.042	38.462
Zitting Cisticola	Cisticola juncidis	Cisticolidae	0.042	84.615
Helmeted Guineafowl	Numida meleagris	Numididae	0.032	23.077
Quailfinch	Ortygospiza atricollis	Estrildidae	0.032	30.769
Cape Longclaw	Macronyx capensis	Motacillidae	0.029	46.154
Speckled Pigeon	Columba guinea	Columbidae	0.026	7.692
Red-collared Widowbird	Euplectes ardens	Ploceidae	0.022	38.462
Diederik Cuckoo	Chrysococcyx caprius	Cuculidae	0.019	46.154
Ring-necked Dove	Streptopelia capicola	Columbidae	0.019	30.769
White-browed Sparrow-Weaver	Plocepasser mahali	Ploceidae	0.019	30.769
Black-chested Prinia	Prinia flavicans	Cisticolidae	0.016	38.462
Barn Swallow	Hirundo rustica	Hirundinidae	0.013	15.385
African Red-eyed Bulbul	Pycnonotus nigricans	Pycnonotidae	0.010	23.077
Cape White-eye	Zosterops virens	Zosteropidae	0.010	7.692
Crimson-breasted Shrike	Laniarius atrococcineus	Malaconotidae	0.010	15.385
Long-tailed Widowbird	Euplectes progne	Ploceidae	0.010	23.077
Southern Boubou	Laniarius ferrugineus	Malaconotidae	0.010	15.385
White-rumped Swift	Apus caffer	Apodidae	0.010	7.692
African Palm Swift	Cypsiurus parvus	Apodidae	0.006	7.692
Bokmakierie	Telophorus zeylonus	Malaconotidae	0.006	15.385
Hadada Ibis	Bostrychia hagedash	Threskiornithidae	0.006	7.692
Levaillant's Cisticola	Cisticola tinniens	Cisticolidae	0.006	15.385
Southern Fiscal	Lanius collaris	Laniidae	0.006	15.385
Yellow-crowned Bishop	Euplectes afer	Ploceidae	0.006	7.692
African Pipit	Anthus cinnamomeus	Motacillidae	0.003	7.692
Black-collared Barbet	Lybius torquatus	Lybiidae	0.003	7.692
Black-headed Heron	Ardea melanocephala	Ardeidae	0.003	7.692
European Bee-eater	Merops apiaster	Meropidae	0.003	7.692
Greater Striped Swallow	Cecropis cucullata	Hirundinidae	0.003	7.692
Little Swift	Apus affinis	Apodidae	0.003	7.692
Melodious Lark	Mirafra cheniana	Alaudidae	0.003	7.692
Spike-heeled Lark	Chersomanes albofasciata	Alaudidae	0.003	7.692
White-winged Widowbird	Euplectes albonotatus	Ploceidae	0.003	7.692

the BIODIVERSITY company

9.6 Appendix F: Incidental Records

Common Name	Scientific Name
African Red-eyed Bulbul	Pycnonotus nigricans
Black-chested Prinia	Prinia flavicans
Blacksmith Lapwing	Vanellus armatus
Black-winged Kite	Elanus caeruleus
Bokmakierie	Telophorus zeylonus
Cape Longclaw	Macronyx capensis
Cloud Cisticola	Cisticola textrix
Common Myna	Acridotheres tristis
Common Quail	Coturnix coturnix
Crimson-breasted Shrike	Laniarius atrococcineus
Desert Cisticola	Cisticola aridulus
Diederik Cuckoo	Chrysococcyx caprius
Greater Striped Swallow	Cecropis cucullata
Hadada Ibis	Bostrychia hagedash
Helmeted Guineafowl	Numida meleagris
Laughing Dove	Spilopelia senegalensis
Levaillant's Cisticola	Cisticola tinniens
Long-tailed Widowbird	Euplectes progne
Pin-tailed Whydah	Vidua macroura
Quailfinch	Ortygospiza atricollis
Red-collared Widowbird	Euplectes ardens
Red-faced Mousebird	Urocolius indicus
Ring-necked Dove	Streptopelia capicola
Rufous-naped Lark	Mirafra africana
Southern Fiscal	Lanius collaris
Southern Masked Weaver	Ploceus velatus
Southern Red Bishop	Euplectes orix
Swainson's Spurfowl	Pternistis swainsonii
White-browed Sparrow-Weaver	Plocepasser mahali
White-winged Widowbird	Euplectes albonotatus
Zitting Cisticola	Cisticola juncidis

9.7 Appendix G: Specialist Declaration of Independence

I, Andrew Husted, declare that:

- I act as the independent specialist in this application;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by the competent authority; and the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority;
- All the particulars furnished by me in this form are true and correct; and
- I realise that a false declaration is an offence in terms of Regulation 71 and is punishable in terms of Section 24F of the Act.

Hart

Andrew Husted Ecologist The Biodiversity Company January 2024

9.8 Appendix H – Specialist CVs

Andrew Husted M.Sc Aquatic Health (*Pr Sci Nat*)

Cell: +27 81 319 1225

Email: andrew@thebiodiversitycompany.com Identity Number: 7904195054081 Date of birth: 19 April 1979

Profile Summary

Working experience throughout South Africa, West and Central Africa and also Armenia & Serbia.

Specialist experience in exploration, mining, engineering, hydropower, private sector and renewable energy.

Experience with project management for national and international multi-disciplinary projects.

Specialist guidance, support and facilitation for the compliance with legislative processes, for incountry requirements, and international lenders.

Specialist expertise include Instream Flow and Ecological Water Requirem ents, Freshwater Ecology, Terrestrial Ecology and also Ecosystem Services.

Areas of Interest

Sustainability and Conservation.

Instream Flow and Ecological Water Requirements.

Publication of scientific journals and articles.

Key Experience

- Familiar with World Bank, Equator Principles and the International Finance Corporation requirements
- Environmental, Social and Health Impact Assessments (ESHIA)
- Environmental Management Programmes (EMP)
- Ecological Water Requirement determination experience
- Wetland delineations and ecological assessments
- Rehabilitation Plans and Monitoring
- Fish population structure assessments
- The use of macroinvertebrates to determine water quality
- Aquatic Ecological Assessments
- Aquaculture

Country Experience

Botswana, Cameroon Democratic Republic of Congo Ghana, Ivory Coast, Lesotho Liberia, Mali, Mozam bique Nigeria, Republic of Armenia, Senegal, Serbia, Sierra Leone, South Africa Tanzania

Nationality

South African

Languages

English - Proficient

Afrikaans - Conversational

German - Basic

Qualifications

- MSc (University of Johannesburg) – Aquatic Health.
- BSc Honours (Rand Afrikaans University) – Aquatic Health
- BSc Natural Science
- Pr Sci Nat (400213/11)
- Certificate of Competence: Mondi Wetland Assessments
- Certificate of Competence: Wetland WET-Management
- SASS 5 (Expired) Department of Water Affairs and Forestry for the River Health Programme
- EcoStatus application for rivers and streams

